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ABSTRACT 
In this paper we propose a new provenance model which is 
tailored to a class of workflow-based applications. We motivate 
the approach with use cases from the astronomy community. We 
generalize the class of applications the approach is relevant to and 
propose a pipeline-centric provenance model. Finally, we evaluate 
the benefits in terms of storage needed by the approach when 
applied to an astronomy application. 
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1. INTRODUCTION 
Provenance is commonly defined as the origin, source or history 
of the derivation of some object. For scientists, provenance of 
scientific results would indicate how results were derived, what 
parameters influenced the derivation, what datasets were used as 
input to the experiment, etc.  In other words, provenance of 
scientific results would help reproducibility [1, 2]--a fundamental 
tenet of the scientific method. 
Data provenance has recently attracted significant interest in 
several areas, including e-Science and grid computing, databases, 
visualization, digital libraries, web technologies, and operating 
systems [3] [4].  Of particular interest is the provenance of data 
generated by scientific workflows [5].  Today, as data are 
generated automatically through the execution of complex, inter-
related  processes, it is ever more difficult to interpret the results. 
While data are being processed, provenance information can be 
automatically captured and then stored in a provenance store. The 
resulting derived data products (both intermediate and final) can 
also be stored in an archive, with metadata about them stored in a 
metadata catalog and location information stored in a replica 
catalog. Thus, in the context of computer systems, the provenance 
of a data product is the process that led to that product, where 
process encompasses all the derivations, datasets, parameters, 

software and hardware components, computational processes, 
digital or non-digital artifacts that were involved in deriving and 
influencing the data product.   
In theory such provenance could be extremely large, however, in 
practice, detailed provenance information is not required by end 
users, since their needs tend to be limited to specific tasks, such as 
experiment reproducibility or the validation of an analysis. 

In this paper we focus on the provenance of data derived by 
scientific/computational workflows [5, 6].  Computational 
workflows have become a useful tool in conducting complex 
scientific analyses. They provide a framework that can be used to 
compose data processing and simulation codes developed by 
different scientists. At the same time, workflows have also 
become a useful representation for managing the execution of 
large-scale computations.  The workflow representation not only 
facilitates overall creation and management of the computation 
but also builds a foundation upon which results can be validated 
and shared. Computational workflows are used to analyze data 
from instruments, to simulate complex phenomena, to mine large 
geographically distributed data sets, and perform other 
sophisticated computations.  

In this paper we argue that in the case of data derived through 
scientific workflows, we can minimize the amount of provenance 
that needs to be stored in order to provide information about how 
data was derived and to enable reproducibility.  

The contributions of this paper are: 

1. A simplified approach to provenance capture for a class 
of deterministic applications. 

2. A definition of application characteristics where this 
approach is applicable.  

3. Preliminary results showing storage usage improvement.  
The rest of the paper is organized as follows. The next section 
illustrates the need for provenance in astronomy applications and 
describes the Montage application [7, 8] [9] that motivated our 
work. Section 3 generalizes the class of applications that can 
benefit from our proposed approach. Section 4 describes our 
pipeline-centric provenance model. Initial evaluation of the 
approach in the context of the astronomy application Montage is 
shown in Section 5. Related work is discussed in Section 6, 
followed by conclusions in Section 7. 

2. Provenance in Astronomy Applications 
In this section we describe the use cases that motivated our work.  
Cases 1 through 3 are derived from surveys of users of the data 
archives at the California Institute of Technology’s Infrared 
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Processing and Analysis Center (IPAC). The fourth use case 
derives from the expected rapid observing cadence of the Large 
Synoptic Survey Telescope (LSST). The use cases demonstrate 
the need for both metadata (data descriptions that assign meaning 
to the data), and data provenance (information about how data 
was derived).  Both metadata and provenance are critical to the 
ability to interpret a particular data item and thus vital to the 
scientific process as it is conducted in-silico. 

2.1 Use Case 1: 
A researcher is studying the dynamics of a cluster of galaxies and 
wants to know what imaging data are available in archives and in 
the literature.  The researcher wants to know the following about 
available images: 
1) What images are available for the cluster of interest that 

contain wavelengths between 0.3 and 2.2 microns, and have 
a spatial extent of 3 x 3 degrees. 

2) For those images obtained by surveys, what are the 
sensitivities of the surveys at these wavelengths? 

3) How are the images constructed: 
a) Are they data sets released by missions, or by individual 

astronomers? 
b) If data are released by individual astronomers: What are 

the telescope, bandpass, instrument, and time? 
c) What processing package and version/algorithm(s) were 

used to process the images? Where can the packages be 
found? 

d) Are the raw data and calibrators available? Where are 
they located? 

e) Where in the cluster of interest are all these images? 
f) What are the image footprints on the sky?  What are the 

pixel scales? etc. 
Clearly not all questions relate to the provenance records of the 
images that the scientists searches. As in most cases, the questions 
posed relate to both the metadata about the original/raw data and 
the metadata that was associated with the processed images. One 
could argue that questions 1, 2, 3 a, b, d, e, and f are metadata 
queries establishing the existence of data products and their basic 
attributes.  However, questions 3 c and d are provenance 
questions, which aim to establish how the images where 
constructed during processing and to support reproducibility as in 
the case of question 3d.  Often, such information is not released 
along with the image data but is necessary for the interpretation of 
the objects seen (or not seen) in the cluster images. 

2.2 Use Case 2 
A researcher wants to use multi-wavelength images of the Taurus 
Dark Cloud to construct a catalog of very faint protostar 
candidates (at the plate limit) to support an observing proposal. 
Knowing the details of the image processing is absolutely crucial 
for a meaningful analysis. 
The researcher needs to know: 

1. All the image data available online between 0.5 microns 
and 25 microns. 

2. If these are "primary" mission products:  
a. What processing algorithms were used?  

b. How was the original data calibrated?  
c. Are the original files and algorithms 

available? 
3. If the images are created from other products: 

a. How have the original products been 
processed?  

b. Has the data been averaged and reprocessed in 
space and time?  

c. Have the input image parameters (projection, 
sampling, orientation) been changed to make 
these products?  

d. How well have they been calibrated?  
e. How were calibration offsets between images 

handled?  
f. Are the algorithms available?  
g. For ground-based data, how have 

backgrounds been rectified or removed?  
4. Where are the original images? 
5. What are their limiting sensitivities? 
6. Have artifacts in the images been identified?   

In this scenario, most of the questions relate to the provenance of 
the data. Only questions 1, 4, 5, and 6 relate to image metadata. 

2.3 Use Case 3 
A researcher wants to carry out a spectroscopic study of the 
abundances of quasars using only available echelle data in the 
archives or the literature.  Some of the questions that need to be 
answered are: 

1. What echelle spectra are accessible from 0.3 microns to 
2.2 microns in ground-based archives. 

2. If the spectra are reduced, or if they are in the literature: 
a. What code/algorithm was used to reduce 

them? 
b. Are atmospheric absorption effects removed? 
c. Has any flux calibration been attempted? 
d. Are trace profiles available for each of the 

orders? Point Spread Functions? Signal-to-
noise? Line profiles? 

3. If the spectra are not reduced: 
a. What is the calibration data and where is it 

dark, biased, traced, focused, or flat? 
b. What calibration lamps were measured? 
c. Is the calibration data available? 

4. For all data, what is the: 
a. target, position, exposure start/stop time, 

wavelength range, exposure time, program 
info (PI, etc), telescope, instrument, grating, 
weather logs on date of observation.  

In this scenario, questions 1 and 4 refer to metadata and questions 
2 and 3 refer to provenance.  



2.4 Use Case 4 
The LSST is expected to begin operations in 2015 [10].  About 
90% of the observing time will be devoted to a deep-wide-fast 
survey mode that will observe a 20,000 square degree region 
about 1,000 times. The rapid cadence of this program will 
produce about 30 TB of data per night, leading to a total of 60 PB 
of raw data, and 30 PB of metadata over ten years of operations. 
The total data volume after processing will be several hundred 
petabytes.  Permanent archiving of this volume of data is not 
feasible, so the efficient recording of provenance is a crucial part 
of LSST’s data management plan. 

2.5  Montage—A commonly used astronomy 
application 
Montage, developed at Caltech, is an application that constructs 
custom science-grade astronomical image mosaics on demand 
based on several existing images. The inputs to the workflow 
include a “template header file” that specifies the mosaic to be 
constructed, and several input images in standard FITS format (a 
file format used throughout the astronomy community) [11]. Input 
images are taken from archives such as 2MASS [12]. The input 
images are first re-projected to the coordinate space of the output 
mosaic.  The re-projected images are then background rectified 
and co-added to create the final output mosaic. Figure 1 shows the 
structure of a small Montage workflow using vertices to represent 
tasks and edges to represent data dependencies between tasks. 
Montage workflows typically contain a large number of tasks that 
process large amounts of data. For example, a workflow to 
generate the 2 degree square mosaic of 2MASS images centered 
around the celestial object M17 would contain approximately 
1,000 individual tasks. 

3. CLASS OF APPLICATIONS 
Montage is an example of a class of well-specified deterministic 
applications that are common in science. These applications 
usually consist of a series of codes (i.e. components) connected 
together to perform large-scale analysis routines. Other examples 
of this class of application include: seismic hazard analysis for 
earthquake forecasts, analysis of large-scale social networks, 
analysis of the epigenomic properties of DNA sequences, 
searching for gravitational waves in interferometer data, and many 
others.   These applications have a number of characteristics that 
can be taken advantage of to enable the reproducibility of results 
and the determination of provenance. These characteristics are as 
follows: 

1. The application is deterministic. Repeating the 
application with the same inputs produces the same 
outputs.  

2. The application is automated. The application does not 
require human intervention to execute.  

3. The application is not monolithic i.e. the application is 
broken up into many different components that are 
connected together in a workflow.  

4. The application is self-contained. By this we mean, that 
the application and all its components can be easily 
assembled in one location. For example, the 
components of Montage can be assembled in one 
directory. 

5. The application does not require any specialized 
hardware to function.  

6. The application uses data from well-known, well-
documented sources. In astronomy, for example, 
significant effort is deployed in documenting the 
functionality of the telescopes and satellites that provide 
source data.  

7. Source data is well preserved, archived systematically, 
and can be readily accessed. For example, the Sloan 
Digital Sky Survey provides direct access to archived 
image data at http://das.sdss.org. 

The last characteristic is optional in our approach. However, if 
applications rely on such sources, our approach can optimize the 
data provenance storage further (Section 5). 
Not all applications have these characteristics. For example, some 
applications rely on services provided by third parties and thus the 
components of the application cannot be assembled in one place. 

Other applications require direct interaction with a human. For 
example, a human’s intervention might be necessary to steer a 
computational simulation. Still others might not be deterministic. 
For example, the application could be dependent on a true random 
number generator i.e. one initialized by a physical process.  
However, while these characteristics are not universally 
applicable, they do describe a wide variety of important scientific 
applications as noted above. We now present a model for 
provenance that takes advantage of these characteristics.  

 
Figure 1: Small Montage Workflow. 

 



4. PIPELINE-CENTRIC PROVENANCE 
MODEL  
To determine the provenance of an application’s output, one 
needs to be able to ascertain the relationship between the steps 
involved in generating the output, how those steps executed, and 
what data each step used during execution. This information can 
be modeled as a graph (Figure 2) that links the output data to the 
process/component that generated it, which in turn is linked to its 
input data, which is likewise linked to another component and so 
on. Thus the goal is to obtain such a provenance graph that 
accurately reflects the execution of the application in question.  It 
is important to note that users may ask provenance questions 
about any portion of the graph not just the output. For example, 
they may ask for the provenance of a particular intermediate data 
product.  
 

 
Figure 2: A basic provenance graph. 
One approach to obtain this graph is to instrument the application 
to capture all steps and all the data resulting from those steps, 
including intermediate data. However, for scientific applications, 
storing intermediate data is not practical because of storage 
constraints. Another downside to this approach is the need to 
instrument the application in order to track data flow, which for 
many applications is infeasible due to the usage of legacy codes.  
However, because the applications we consider have the 7 
characteristics listed in Section 3, we can take a new approach 
that circumvents these issues.  
The approach we adopt is to leverage the workflow or pipeline 
used to define the application as the core of our model. The 
pipeline defines the nodes and edges in the provenance graph 
under the assumption that the pipeline defines all inputs and 
outputs of every component. (Later we discuss how to deal with 
conditional branches.) This inversion is possible because the 
application is deterministic (Characteristic #1). The pipeline itself 
is not sufficient to answer provenance queries, in particular, about 
intermediate data. For example, which data products led to Dinter 
being as it is (in Figure 2). 
To answer these queries, we need to be able to re-execute the 
pipeline to duplicate the original run. This requires the following 
information in addition to the pipeline: 

• The original input data. 

• The executables corresponding to each component 
defined in the pipeline. 

• The parameter settings for each component. 

• The execution environment for running the application. 
With this information, we can reproduce any intermediate data 
product. Thus, intermediate data in our approach is treated as 
virtual data [13, 14]. Then the procedure to determine the 
provenance of any Dinter would be to determine the subgraph of 
the workflow that is responsible for Dinter, and re-execute that 
subset. During the re-execution phase, one could also store all 

intermediate data products and return those as part of the answer 
to the provenance query. For workflow management systems that 
support conditions as part of their workflow language, this re-
execution approach could be used to determine when a particular 
conditional branch was taken by re-executing up to that condition. 
Obviously, if execution overhead is of concern, intermediate data 
products can still be stored.  An interesting test of this approach 
would be to pick the set of intermediate data products that would 
optimize re-execution for determining provenance. In other 
words, which data are cheaper to store than to regenerate.  
One important question is whether this approach can accurately 
deal with determining the provenance of errors. In workflow 
systems such as Pegasus [15], errors in data are explicitly 
modeled as outputs (including stderr files). Thus, we can trace 
back through the workflow to determine which component is 
responsible for the error. Furthermore, because our approach 
specifically captures the execution environment, for almost all 
non-hardware related errors, we can determine the exact situation 
in which the error occurred.  
Thus far we have discussed our general pipeline-centric model 
and its requirements. We now present the realization of this 
model. 

4.1 A Pipeline-Centric Provenance Package 
Our model is realized as a directory containing a workflow, a set 
of files in subdirectories, and a manifest that ties the contents 
together. The directory can be compressed as a zip or tar file to 
create a package describing the provenance of the experiment.  
This approach to packaging is common. For example, both Open 
Office and Microsoft Office use it for storing office documents 
(see the Open Document Format and Open Packaging Convention 
respectively). Additionally, myExperiment Packs [16] and Kepler 
KAR [17] files use a similar technique.  
In our approach provenance packages are WHIP bundles 
(http://www.whipplugin.org/).  The manifest of a WHIP bundle is 
an XML file conforming to the Atom Feed Schema 
(http://atompub.org/rfc4287.html).  Atom is a widely used format 
for syndicating content over the web. An Atom feed consists of a 
a series of entries, each of which contains a list of categories. A 
WHIP manifest file contains a single entry. The categories in a 
WHIP manifest file point to the various contents of the bundle. 
Importantly, categories can point to both objects within the 
bundle and remote objects. The manifest for a provenance 
package includes: 

− Metadata such as the creator of the bundle, the date of 
creation, and the workflow format 

− The workflow description 

− Input data 

− Output data 

− Virtual machine characteristics and the VM image 
location 

The VM image contains software needed to execute the 
workflow-based application. In our example this includes: Globus 
[18], Condor [19], Pegasus and application binaries. 
We expect that the virtual machines are configured as they were 
used in the execution of the workflow. Thus, they should contain 
all the necessary libraries for running the codes required by the 



workflow. The use of virtual machines is fundamental to our 
approach as it allows the entire execution environment to be 
captured, thus allowing for exact replication. 
Figure 3 shows a portion of the contents of a WHIP manifest.  
The category “entrypoint” refers to the file containing the 
workflow described using the Pegasus [20] DAX format [21]. 
Note that the DAX will also contain the parameter settings for the 
workflow.  
The category “VM” contains a URL to the VM image that was 
used in the execution of the workflow. The VM images can be 
quite large as can be seen in Table 1, but they can be reused by a 
number of (in this case) Montage workflows. Thus it may be 
beneficial to include only references to them. This reliance on 
virtual machines is enabled by the notion that the application does 
not run on specialized hardware (Characteristic 5). Another 
approach would be to store the application codes in the WHIP 
rather than in the VM image. Storing application codes in the 
WHIP would potentially provide efficient re-execution in cases 
where it is not necessary to load the VM; for example if the 
current execution environment is suitable for running the 
workflow. 
The category “inputfile” refers to all the inputs required to rerun 
the workflow. When using input data that is stored long-term in 
an archive the actual input files can be omitted from the bundle 
and instead URLs or a metadata query to this data can be 
provided.  
The final category “outputfile” refers to the outputs of the 
execution of the workflow. If the outputs of the workflow are 
large, they can be omitted from the bundle and the workflow can 
be re-executed to reproduce them.  
For applications that follow the characteristics described in 
Section 3, a WHIP bundle containing all the information 
described above, provides all the necessary information to re-
execute the experiment, and determine the provenance of the data. 
However, while such a package is comprehensive, it also requires 
significant storage space.  Example bundles are located at: 
http://pegasus.isi.edu/workflows/montage/. 

4.2 Storage Efficiencies through References 
By taking advantage of the characteristics of the applications we 
consider, and by using the functionality of the WHIP bundle to 
refer to external locations, the size of a provenance package can 
be significantly reduced, as demonstrated in Section 5. In the 
extreme case, we imagine that the entire bundle would only 
contain metadata, a workflow description, and references to input 
data and VM images. This is under the assumption that all input 
data, all virtual machines, and all codes are stored in a remotely 
accessible archival repository. 
While it is not the case at the moment, many scientific fields are 
beginning to store data in curated archives. As previously 
mentioned, sky survey data is available from such a repository. In 
addition, the scientific community that studies climate change has 
set up a network of data centers for topics ranging from 
biodiversity to glaciology 
(http://www.ngdc.noaa.gov/wdc/list.shtml). Besides data sets, 
there are a number of national software repositories for scientific 

computing codes [22]. Finally, Amazon provides a number of 
preconfigured virtual machine images for use on their cloud. 
These preconfigured virtual machines are a step towards an 
accessible archived library of virtual machines.  
In the next section, we show how the pipeline provenance model 
can reduce the amount of storage needed for provenance through 
the use of re-execution and references.  
 

 

<?xml version="1.0"?> 
<entry xmlns="http://www.w3.org/2005/Atom"> 
  <title>Montage Workflow</title>  
  <author>   <name>Gaurang Mehta</name> 
    <email>gmehta@isi.edu</email>   </author> 
  <id>http://pegasus.isi.edu/workflows/montage/1</id> 
  <link 
href="http://pegasus.isi.edu/workflows/montage/montage-1-
0.1.whip" rel="alternate"/> 
  <updated>2009-07-30T23:19:03Z</updated> 
  <summary>This workflow from the Montage 
(http://montage.ipac.caltech.edu) application is used to 
generate science… 
… 
  <category 
scheme="http://org.whipplugin/data/description/datatype" 
term="http://pegasus.isi.edu/schema/DAX" label="The 
format of the workflow description"/> 
  <category 
scheme="http://org.whipplugin/data/description/entrypoint
" term="data/montage.dax" label="The workflow 
description" /> 
  <category 
scheme="http://pegasus.isi.edu/workflows/inputfile" 
term="data/input/2mass-atlas-990502s-j1420186.fits" 
size="2111040" label="An input file"/> 
… 
   <category scheme="http://pegasus.isi.edu/workflows/VM" 
term="http://pegasus.isi.edu/workflows/montage/fc8-
x86_64-montage.img" size="2684354560" arch="x86_64" 
os="Fedora Core 8" type="EC2 Image" label="The VM 
Image for Amazon EC2 containing Pegasus, Condor and 
Globus to run the workflow" /> 
  <category 
scheme="http://pegasus.isi.edu/workflows/outputfile" 
term="data/output/mosaic.jpg" size="2478" label="An 
output file"/> 
</entry> 

Figure 3: A snippet of the WHIP manifest. 
 



 

5. EVALUATION  
In order to evaluate the benefits of the proposed approach, we 
measured the amount of disk space needed to store provenance 
information in the traditional approach versus our pipeline 
provenance model. In the traditional approach all the information 
about the input, intermediate, and final data are stored as well as 
the workflow description and all the information associated with 
its execution.  
Table 1 shows the disk space needed to store provenance 
information about Montage workflows of various sizes.  As the 
size of the mosaics increases from 0.5 degree squares of the sky to 
8 degree squares, so does the size of the input data and the size of 
the workflow to be executed.  We distinguish between input data, 
intermediate data which are generated and consumed as part of the 
workflow execution, and the output data which correspond to the 
desired mosaic.  The code represents the Montage code base, but 
does not include the workflow management code. The latter is 
included in the virtual image described below.  The workflow 
specification is the size of the workflow as it is described in XML. 
The specification is in a form of a Directed Acyclic Graph, where 
the nodes of the graph represent the computations and their input 
and output data. The dependencies between the computations are 
also specified. The VM size corresponds to the size of the virtual 
machine image, which includes Fedora 8 with Java, Pegasus, 
Condor, Globus and some miscellaneous packages for Perl, C, 
C++, etc.  This VM can be deployed on a cloud such as Amazon 
EC2 [23] or another virtual environment and be used as a host for 
the workflow computations.  The full execution directory 
corresponds to all the files needed for the workflow engine to 
submit the workflow to the execution environment as well as all 
the logging information generated during the workflow execution.  
In the traditional provenance model all the information above 
would be considered a part of the provenance record and would 
be stored. While this enables queries to be performed without the 
need for re-execution, this also adds significantly to the storage 
overhead.  
In order to conduct a preliminary evaluation of our approach, we 
measured the data footprint of the traditional and pipeline 
provenance approach for the Montage application when managed 
by the Pegasus Workflow Management System. The results are 
shown in Figure 4.  The X-axis shows the size of the Montage 
mosaic in degrees square.  The Y-axis shows the total data 
footprint in megabytes (on a logarithmic scale).  We plotted four 
different quantities: 1) the data footprint of the traditional 

provenance approach, which saves everything seen in Table 1 
with the exception of the VM, 2) the same quantity as 1) but 
includes the Virtual Machine image, 3) the data footprint of the 
proposed pipeline-centric provenance model, and 4) the data 
footprint of the pipeline-centric model as implemented in the 
WHIP format, which compresses the elements of the bundle. 
In the pipeline-centric provenance package we included:   
• The Metadata which includes the creator of the bundle, date 

of creation, workflow format 

• The workflow description 

• The input data 

• A reference to the VM image 
We can see that in this case the pipeline-centric approach is on 
average 70% more efficient in terms of storage than the traditional 
approach. Additionally, when the pipeline-centric approach is 
implemented as a WHIP bundle, this improvement grows to 
almost 90% (although one could argue that the traditional 
provenance records can be compressed as well).  If we include 
only references to the input data rather than the data themselves, 
as can be done for applications that access well maintained data 
archives, then the bundles would be even smaller.  

 
Figure 4: Data Footprint of Different Approaches to 

Provenance. 
 
A drawback of our approach is that having only partial 
provenance records requires the workflow to be re-executed when 
a user wants to inspect or query the records. Thus we have the 
classic space versus time tradeoff. In our model, we assume that 
provenance data will not be frequently inspected or queried and 

 

Mosaic 
Size 

Input Data Intermediate 
Data 

Output 
Data 

Code Workflow 
Specification 

VM Size Full Exec 
Dir 

Total 

0.5 31.50MB 251.7 MB 56.3 MB 49 MB 0.081 MB 759.8 MB 1.2 MB 1,149.581 MB 

1 94.5MB 767 MB 204 MB 49 MB 0.2607 MB 759.8 MB 3.2 MB 1,877.7607 MB 

2 302.4MB 2504 MB 796 MB 49 MB 8769 MB 759.8 MB 11 MB 1,3191.2 MB 

4 1224.3MB 10300 MB 3269 MB 49 MB 3.8 MB 759.8 MB 44 MB 1,5649.9 MB 

6 2578.8 MB 21938 MB 7396 MB 49 MB 8 MB 759.8 MB 92 MB 3,2821.6 MB 

8 4414.2 MB 37951 MB 13191 MB 49 MB 14 MB 759.8 MB 160 MB 5,6539 MB 

Table 1: Data size of various Montage Workflow Artifacts. 
 



thus re-execution will not be expensive. However, if some data 
are more popular than others, it may be beneficial to keep their 
full provenance records to be able to efficiently answer 
provenance queries. 
In order to quantify the cost (in time) of workflow re-execution, 
we show the runtime of Montage on an Amazon EC2 extra large, 
64-bit, high CPU instance with 7 GB of memory, 8 virtual cores 
with 2.5 EC2 Compute Units each, 1690 GB of instance storage, 
and high I/O performance.  The cost of such an instance is $0.80 
per instance hour (http://aws.amazon.com/ec2/instance-types/).  
Figure 4 shows the runtime of Montage on such an instance. 

  

 
Figure 4: Runtime of Montage on a Large Instance of EC2. 

 
For the largest size mosaic (8 degrees square) the runtime is just 
over 2 hours on the average, for a cost of $2.40. Generating 2 or 4 
degree square mosaic takes less than 30 minutes and costs $0.80.  

6. RELATED WORK  
A number of systems and approaches have been developed to 
address provenance in e-Science applications. Bose and Frew [3] 
provide an extensive overview of provenance systems. Simmahn 
et al. [4] discuss various provenance systems for use in e-Science. 
Some systems, such as PASS [24], are execution-centric, focusing 
on gathering runtime information in the context of interactive 
applications. Other systems, such as Taverna [25], use a workflow 
to organize provenance information at runtime [26].  Finally, the 
database community has focused on the provenance of derived 
tuples. A good example of an extended database is Trio [27].  
Unlike database systems, the applications we consider run on 
heterogeneous data (usually in the form of files) using complex 
codes. Execution-centric systems cater to more interactive 
applications whereas the applications we consider are well defined 
at the outset. The pipeline centric provenance model is closest to 
workflow-centric models. However, these models are not focused 
on re-execution as the mechanism to retrieve provenance. Instead, 
they use the workflow as a way to structure provenance 
information. 
The closest work to our approach is the Virtual Data System 
(VDS) [28]. In this approach, provenance queries are, in some 
cases, answered by re-executing a workflow to retrieve 
intermediate results as suggested by the pipeline provenance 
model. Our work differs in that VDS uses a centralized database 
to store provenance data whereas our model focuses on collecting 
provenance information into an easily transportable package. 

Additionally, our work helps users understand when a provenance 
system based on re-execution is appropriate for their application. 
Lastly, unlike VDS, we focus on the storage advantages of this 
approach. 
Other work has considered how to efficiently store provenance 
information. Chapman et al. describe a series of “provenance 
factorization” algorithms that find common subtrees in a 
provenance graph, which can be then collapsed to reduce the size 
of the provenance graph [29]. Heinis and Alonso describe an 
interval representation for provenance graphs that significantly 
reduces their size [30]. Groth et al. describe the use of references 
to reduce the size of provenance graphs [31].  The pipeline 
provenance model differs from these approaches in that it uses the 
notion of reproducibility to compress provenance information. 
However, unlike these methods, our approach may have 
significant query time impact because of the need for re-execution 
to retrieve intermediate data. 
The concept of reproducibility has been discussed widely as a 
motivating factor for provenance [32]. There is a broad movement 
to encourage reproducible science (http://www.rrplanet.com). Our 
approach is not just to use provenance for reproducibility, but use 
the notion of reproducibility as the basis for provenance capture.  

7. CONCLUSIONS 
The pipeline-centric provenance model provides a packaging 
mechanism to capture the provenance of data produced by a class 
of applications common in e-Science.  While this model can 
capture the data necessary to cover our example use-cases from 
Montage there is still work to be done to enable querying of these 
packages. We plan to add a query mechanism that transparently 
re-executes workflows to determine the provenance of 
intermediate data products. This query mechanism will support 
the retrieval of remotely stored data. We envision that the results 
of provenance queries will be returned as an Open Provenance 
Model graph [33] enabling interoperability between pipeline-
centric provenance packages and other provenance systems. Once 
this query mechanism has been developed, we aim to measure the 
overhead of query by re-execution in comparison to standard 
query mechanisms that store all intermediate data. This will allow 
for the characterization of the trade-off between storage overhead 
and query time.  
Both provenance and reproducibility are fundamental parts of the 
scientific process. For a certain class of scientific applications, the 
ability to reproduce a result can provide enough information to 
determine the provenance of output data. In this paper, we have 
described a pipeline-centric provenance model that captures all 
necessary information for provenance in a single package. 
Furthermore, we have shown using an initial set of experiments 
that significant storage reductions can be achieved using this 
model. Finally, we have described the type of applications that are 
suitable for this model. This work is the first step towards a 
greater understanding of the intersection of provenance and 
reproducibility in scientific workflow- based applications. 
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