
Pipeline-Centric Provenance Model
Paul Groth, Ewa Deelman, Gideon Juve, Gaurang

Mehta
USC Information Sciences Institute
 4676 Admiralty Way, suite 1001

Marina del Rey, CA 90292
+1-310-822-1511

{pgroth, deelman, gideon, gmehta}@isi.edu

Bruce Berriman
Infrared Processing and Analysis Ctr.

100-22 Caltech
Pasadena, CA 91125

+1-626-395-1817
gbb@ipac.caltech.edu

ABSTRACT
In this paper we propose a new provenance model which is
tailored to a class of workflow-based applications. We motivate
the approach with use cases from the astronomy community. We
generalize the class of applications the approach is relevant to and
propose a pipeline-centric provenance model. Finally, we evaluate
the benefits in terms of storage needed by the approach when
applied to an astronomy application.

General Terms
Documentation, Performance

Keywords
Provenance, computational workflows, reproducibility, storage

1. INTRODUCTION
Provenance is commonly defined as the origin, source or history
of the derivation of some object. For scientists, provenance of
scientific results would indicate how results were derived, what
parameters influenced the derivation, what datasets were used as
input to the experiment, etc. In other words, provenance of
scientific results would help reproducibility [1, 2]--a fundamental
tenet of the scientific method.
Data provenance has recently attracted significant interest in
several areas, including e-Science and grid computing, databases,
visualization, digital libraries, web technologies, and operating
systems [3] [4]. Of particular interest is the provenance of data
generated by scientific workflows [5]. Today, as data are
generated automatically through the execution of complex, inter-
related processes, it is ever more difficult to interpret the results.
While data are being processed, provenance information can be
automatically captured and then stored in a provenance store. The
resulting derived data products (both intermediate and final) can
also be stored in an archive, with metadata about them stored in a
metadata catalog and location information stored in a replica
catalog. Thus, in the context of computer systems, the provenance
of a data product is the process that led to that product, where
process encompasses all the derivations, datasets, parameters,

software and hardware components, computational processes,
digital or non-digital artifacts that were involved in deriving and
influencing the data product.
In theory such provenance could be extremely large, however, in
practice, detailed provenance information is not required by end
users, since their needs tend to be limited to specific tasks, such as
experiment reproducibility or the validation of an analysis.

In this paper we focus on the provenance of data derived by
scientific/computational workflows [5, 6]. Computational
workflows have become a useful tool in conducting complex
scientific analyses. They provide a framework that can be used to
compose data processing and simulation codes developed by
different scientists. At the same time, workflows have also
become a useful representation for managing the execution of
large-scale computations. The workflow representation not only
facilitates overall creation and management of the computation
but also builds a foundation upon which results can be validated
and shared. Computational workflows are used to analyze data
from instruments, to simulate complex phenomena, to mine large
geographically distributed data sets, and perform other
sophisticated computations.

In this paper we argue that in the case of data derived through
scientific workflows, we can minimize the amount of provenance
that needs to be stored in order to provide information about how
data was derived and to enable reproducibility.

The contributions of this paper are:

1. A simplified approach to provenance capture for a class
of deterministic applications.

2. A definition of application characteristics where this
approach is applicable.

3. Preliminary results showing storage usage improvement.
The rest of the paper is organized as follows. The next section
illustrates the need for provenance in astronomy applications and
describes the Montage application [7, 8] [9] that motivated our
work. Section 3 generalizes the class of applications that can
benefit from our proposed approach. Section 4 describes our
pipeline-centric provenance model. Initial evaluation of the
approach in the context of the astronomy application Montage is
shown in Section 5. Related work is discussed in Section 6,
followed by conclusions in Section 7.

2. Provenance in Astronomy Applications
In this section we describe the use cases that motivated our work.
Cases 1 through 3 are derived from surveys of users of the data
archives at the California Institute of Technology’s Infrared

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
WORKS 09, November 15, 2009, Portland Oregon, USA.
Copyright 2009 ACM 978-1-60558-717-2/09/11...$10.00.

gbb
Sticky Note

P. Groth, E. Deelman, G. Juve, G. Mehta, and B. Berriman,
"Pipeline-Centric Provenance Model," in The 4th Workshop on Workflows in
Support of Large-Scale Science Portland, OR, 2009.

Processing and Analysis Center (IPAC). The fourth use case
derives from the expected rapid observing cadence of the Large
Synoptic Survey Telescope (LSST). The use cases demonstrate
the need for both metadata (data descriptions that assign meaning
to the data), and data provenance (information about how data
was derived). Both metadata and provenance are critical to the
ability to interpret a particular data item and thus vital to the
scientific process as it is conducted in-silico.

2.1 Use Case 1:
A researcher is studying the dynamics of a cluster of galaxies and
wants to know what imaging data are available in archives and in
the literature. The researcher wants to know the following about
available images:
1) What images are available for the cluster of interest that

contain wavelengths between 0.3 and 2.2 microns, and have
a spatial extent of 3 x 3 degrees.

2) For those images obtained by surveys, what are the
sensitivities of the surveys at these wavelengths?

3) How are the images constructed:
a) Are they data sets released by missions, or by individual

astronomers?
b) If data are released by individual astronomers: What are

the telescope, bandpass, instrument, and time?
c) What processing package and version/algorithm(s) were

used to process the images? Where can the packages be
found?

d) Are the raw data and calibrators available? Where are
they located?

e) Where in the cluster of interest are all these images?
f) What are the image footprints on the sky? What are the

pixel scales? etc.
Clearly not all questions relate to the provenance records of the
images that the scientists searches. As in most cases, the questions
posed relate to both the metadata about the original/raw data and
the metadata that was associated with the processed images. One
could argue that questions 1, 2, 3 a, b, d, e, and f are metadata
queries establishing the existence of data products and their basic
attributes. However, questions 3 c and d are provenance
questions, which aim to establish how the images where
constructed during processing and to support reproducibility as in
the case of question 3d. Often, such information is not released
along with the image data but is necessary for the interpretation of
the objects seen (or not seen) in the cluster images.

2.2 Use Case 2
A researcher wants to use multi-wavelength images of the Taurus
Dark Cloud to construct a catalog of very faint protostar
candidates (at the plate limit) to support an observing proposal.
Knowing the details of the image processing is absolutely crucial
for a meaningful analysis.
The researcher needs to know:

1. All the image data available online between 0.5 microns
and 25 microns.

2. If these are "primary" mission products:
a. What processing algorithms were used?

b. How was the original data calibrated?
c. Are the original files and algorithms

available?
3. If the images are created from other products:

a. How have the original products been
processed?

b. Has the data been averaged and reprocessed in
space and time?

c. Have the input image parameters (projection,
sampling, orientation) been changed to make
these products?

d. How well have they been calibrated?
e. How were calibration offsets between images

handled?
f. Are the algorithms available?
g. For ground-based data, how have

backgrounds been rectified or removed?
4. Where are the original images?
5. What are their limiting sensitivities?
6. Have artifacts in the images been identified?

In this scenario, most of the questions relate to the provenance of
the data. Only questions 1, 4, 5, and 6 relate to image metadata.

2.3 Use Case 3
A researcher wants to carry out a spectroscopic study of the
abundances of quasars using only available echelle data in the
archives or the literature. Some of the questions that need to be
answered are:

1. What echelle spectra are accessible from 0.3 microns to
2.2 microns in ground-based archives.

2. If the spectra are reduced, or if they are in the literature:
a. What code/algorithm was used to reduce

them?
b. Are atmospheric absorption effects removed?
c. Has any flux calibration been attempted?
d. Are trace profiles available for each of the

orders? Point Spread Functions? Signal-to-
noise? Line profiles?

3. If the spectra are not reduced:
a. What is the calibration data and where is it

dark, biased, traced, focused, or flat?
b. What calibration lamps were measured?
c. Is the calibration data available?

4. For all data, what is the:
a. target, position, exposure start/stop time,

wavelength range, exposure time, program
info (PI, etc), telescope, instrument, grating,
weather logs on date of observation.

In this scenario, questions 1 and 4 refer to metadata and questions
2 and 3 refer to provenance.

2.4 Use Case 4
The LSST is expected to begin operations in 2015 [10]. About
90% of the observing time will be devoted to a deep-wide-fast
survey mode that will observe a 20,000 square degree region
about 1,000 times. The rapid cadence of this program will
produce about 30 TB of data per night, leading to a total of 60 PB
of raw data, and 30 PB of metadata over ten years of operations.
The total data volume after processing will be several hundred
petabytes. Permanent archiving of this volume of data is not
feasible, so the efficient recording of provenance is a crucial part
of LSST’s data management plan.

2.5 Montage—A commonly used astronomy
application
Montage, developed at Caltech, is an application that constructs
custom science-grade astronomical image mosaics on demand
based on several existing images. The inputs to the workflow
include a “template header file” that specifies the mosaic to be
constructed, and several input images in standard FITS format (a
file format used throughout the astronomy community) [11]. Input
images are taken from archives such as 2MASS [12]. The input
images are first re-projected to the coordinate space of the output
mosaic. The re-projected images are then background rectified
and co-added to create the final output mosaic. Figure 1 shows the
structure of a small Montage workflow using vertices to represent
tasks and edges to represent data dependencies between tasks.
Montage workflows typically contain a large number of tasks that
process large amounts of data. For example, a workflow to
generate the 2 degree square mosaic of 2MASS images centered
around the celestial object M17 would contain approximately
1,000 individual tasks.

3. CLASS OF APPLICATIONS
Montage is an example of a class of well-specified deterministic
applications that are common in science. These applications
usually consist of a series of codes (i.e. components) connected
together to perform large-scale analysis routines. Other examples
of this class of application include: seismic hazard analysis for
earthquake forecasts, analysis of large-scale social networks,
analysis of the epigenomic properties of DNA sequences,
searching for gravitational waves in interferometer data, and many
others. These applications have a number of characteristics that
can be taken advantage of to enable the reproducibility of results
and the determination of provenance. These characteristics are as
follows:

1. The application is deterministic. Repeating the
application with the same inputs produces the same
outputs.

2. The application is automated. The application does not
require human intervention to execute.

3. The application is not monolithic i.e. the application is
broken up into many different components that are
connected together in a workflow.

4. The application is self-contained. By this we mean, that
the application and all its components can be easily
assembled in one location. For example, the
components of Montage can be assembled in one
directory.

5. The application does not require any specialized
hardware to function.

6. The application uses data from well-known, well-
documented sources. In astronomy, for example,
significant effort is deployed in documenting the
functionality of the telescopes and satellites that provide
source data.

7. Source data is well preserved, archived systematically,
and can be readily accessed. For example, the Sloan
Digital Sky Survey provides direct access to archived
image data at http://das.sdss.org.

The last characteristic is optional in our approach. However, if
applications rely on such sources, our approach can optimize the
data provenance storage further (Section 5).
Not all applications have these characteristics. For example, some
applications rely on services provided by third parties and thus the
components of the application cannot be assembled in one place.

Other applications require direct interaction with a human. For
example, a human’s intervention might be necessary to steer a
computational simulation. Still others might not be deterministic.
For example, the application could be dependent on a true random
number generator i.e. one initialized by a physical process.
However, while these characteristics are not universally
applicable, they do describe a wide variety of important scientific
applications as noted above. We now present a model for
provenance that takes advantage of these characteristics.

Figure 1: Small Montage Workflow.

4. PIPELINE-CENTRIC PROVENANCE
MODEL
To determine the provenance of an application’s output, one
needs to be able to ascertain the relationship between the steps
involved in generating the output, how those steps executed, and
what data each step used during execution. This information can
be modeled as a graph (Figure 2) that links the output data to the
process/component that generated it, which in turn is linked to its
input data, which is likewise linked to another component and so
on. Thus the goal is to obtain such a provenance graph that
accurately reflects the execution of the application in question. It
is important to note that users may ask provenance questions
about any portion of the graph not just the output. For example,
they may ask for the provenance of a particular intermediate data
product.

Figure 2: A basic provenance graph.
One approach to obtain this graph is to instrument the application
to capture all steps and all the data resulting from those steps,
including intermediate data. However, for scientific applications,
storing intermediate data is not practical because of storage
constraints. Another downside to this approach is the need to
instrument the application in order to track data flow, which for
many applications is infeasible due to the usage of legacy codes.
However, because the applications we consider have the 7
characteristics listed in Section 3, we can take a new approach
that circumvents these issues.
The approach we adopt is to leverage the workflow or pipeline
used to define the application as the core of our model. The
pipeline defines the nodes and edges in the provenance graph
under the assumption that the pipeline defines all inputs and
outputs of every component. (Later we discuss how to deal with
conditional branches.) This inversion is possible because the
application is deterministic (Characteristic #1). The pipeline itself
is not sufficient to answer provenance queries, in particular, about
intermediate data. For example, which data products led to Dinter
being as it is (in Figure 2).
To answer these queries, we need to be able to re-execute the
pipeline to duplicate the original run. This requires the following
information in addition to the pipeline:

• The original input data.

• The executables corresponding to each component
defined in the pipeline.

• The parameter settings for each component.

• The execution environment for running the application.
With this information, we can reproduce any intermediate data
product. Thus, intermediate data in our approach is treated as
virtual data [13, 14]. Then the procedure to determine the
provenance of any Dinter would be to determine the subgraph of
the workflow that is responsible for Dinter, and re-execute that
subset. During the re-execution phase, one could also store all

intermediate data products and return those as part of the answer
to the provenance query. For workflow management systems that
support conditions as part of their workflow language, this re-
execution approach could be used to determine when a particular
conditional branch was taken by re-executing up to that condition.
Obviously, if execution overhead is of concern, intermediate data
products can still be stored. An interesting test of this approach
would be to pick the set of intermediate data products that would
optimize re-execution for determining provenance. In other
words, which data are cheaper to store than to regenerate.
One important question is whether this approach can accurately
deal with determining the provenance of errors. In workflow
systems such as Pegasus [15], errors in data are explicitly
modeled as outputs (including stderr files). Thus, we can trace
back through the workflow to determine which component is
responsible for the error. Furthermore, because our approach
specifically captures the execution environment, for almost all
non-hardware related errors, we can determine the exact situation
in which the error occurred.
Thus far we have discussed our general pipeline-centric model
and its requirements. We now present the realization of this
model.

4.1 A Pipeline-Centric Provenance Package
Our model is realized as a directory containing a workflow, a set
of files in subdirectories, and a manifest that ties the contents
together. The directory can be compressed as a zip or tar file to
create a package describing the provenance of the experiment.
This approach to packaging is common. For example, both Open
Office and Microsoft Office use it for storing office documents
(see the Open Document Format and Open Packaging Convention
respectively). Additionally, myExperiment Packs [16] and Kepler
KAR [17] files use a similar technique.
In our approach provenance packages are WHIP bundles
(http://www.whipplugin.org/). The manifest of a WHIP bundle is
an XML file conforming to the Atom Feed Schema
(http://atompub.org/rfc4287.html). Atom is a widely used format
for syndicating content over the web. An Atom feed consists of a
a series of entries, each of which contains a list of categories. A
WHIP manifest file contains a single entry. The categories in a
WHIP manifest file point to the various contents of the bundle.
Importantly, categories can point to both objects within the
bundle and remote objects. The manifest for a provenance
package includes:

− Metadata such as the creator of the bundle, the date of
creation, and the workflow format

− The workflow description

− Input data

− Output data

− Virtual machine characteristics and the VM image
location

The VM image contains software needed to execute the
workflow-based application. In our example this includes: Globus
[18], Condor [19], Pegasus and application binaries.
We expect that the virtual machines are configured as they were
used in the execution of the workflow. Thus, they should contain
all the necessary libraries for running the codes required by the

workflow. The use of virtual machines is fundamental to our
approach as it allows the entire execution environment to be
captured, thus allowing for exact replication.
Figure 3 shows a portion of the contents of a WHIP manifest.
The category “entrypoint” refers to the file containing the
workflow described using the Pegasus [20] DAX format [21].
Note that the DAX will also contain the parameter settings for the
workflow.
The category “VM” contains a URL to the VM image that was
used in the execution of the workflow. The VM images can be
quite large as can be seen in Table 1, but they can be reused by a
number of (in this case) Montage workflows. Thus it may be
beneficial to include only references to them. This reliance on
virtual machines is enabled by the notion that the application does
not run on specialized hardware (Characteristic 5). Another
approach would be to store the application codes in the WHIP
rather than in the VM image. Storing application codes in the
WHIP would potentially provide efficient re-execution in cases
where it is not necessary to load the VM; for example if the
current execution environment is suitable for running the
workflow.
The category “inputfile” refers to all the inputs required to rerun
the workflow. When using input data that is stored long-term in
an archive the actual input files can be omitted from the bundle
and instead URLs or a metadata query to this data can be
provided.
The final category “outputfile” refers to the outputs of the
execution of the workflow. If the outputs of the workflow are
large, they can be omitted from the bundle and the workflow can
be re-executed to reproduce them.
For applications that follow the characteristics described in
Section 3, a WHIP bundle containing all the information
described above, provides all the necessary information to re-
execute the experiment, and determine the provenance of the data.
However, while such a package is comprehensive, it also requires
significant storage space. Example bundles are located at:
http://pegasus.isi.edu/workflows/montage/.

4.2 Storage Efficiencies through References
By taking advantage of the characteristics of the applications we
consider, and by using the functionality of the WHIP bundle to
refer to external locations, the size of a provenance package can
be significantly reduced, as demonstrated in Section 5. In the
extreme case, we imagine that the entire bundle would only
contain metadata, a workflow description, and references to input
data and VM images. This is under the assumption that all input
data, all virtual machines, and all codes are stored in a remotely
accessible archival repository.
While it is not the case at the moment, many scientific fields are
beginning to store data in curated archives. As previously
mentioned, sky survey data is available from such a repository. In
addition, the scientific community that studies climate change has
set up a network of data centers for topics ranging from
biodiversity to glaciology
(http://www.ngdc.noaa.gov/wdc/list.shtml). Besides data sets,
there are a number of national software repositories for scientific

computing codes [22]. Finally, Amazon provides a number of
preconfigured virtual machine images for use on their cloud.
These preconfigured virtual machines are a step towards an
accessible archived library of virtual machines.
In the next section, we show how the pipeline provenance model
can reduce the amount of storage needed for provenance through
the use of re-execution and references.

<?xml version="1.0"?>
<entry xmlns="http://www.w3.org/2005/Atom">
 <title>Montage Workflow</title>
 <author> <name>Gaurang Mehta</name>
 <email>gmehta@isi.edu</email> </author>
 <id>http://pegasus.isi.edu/workflows/montage/1</id>
 <link
href="http://pegasus.isi.edu/workflows/montage/montage-1-
0.1.whip" rel="alternate"/>
 <updated>2009-07-30T23:19:03Z</updated>
 <summary>This workflow from the Montage
(http://montage.ipac.caltech.edu) application is used to
generate science…
…
 <category
scheme="http://org.whipplugin/data/description/datatype"
term="http://pegasus.isi.edu/schema/DAX" label="The
format of the workflow description"/>
 <category
scheme="http://org.whipplugin/data/description/entrypoint
" term="data/montage.dax" label="The workflow
description" />
 <category
scheme="http://pegasus.isi.edu/workflows/inputfile"
term="data/input/2mass-atlas-990502s-j1420186.fits"
size="2111040" label="An input file"/>
…
 <category scheme="http://pegasus.isi.edu/workflows/VM"
term="http://pegasus.isi.edu/workflows/montage/fc8-
x86_64-montage.img" size="2684354560" arch="x86_64"
os="Fedora Core 8" type="EC2 Image" label="The VM
Image for Amazon EC2 containing Pegasus, Condor and
Globus to run the workflow" />
 <category
scheme="http://pegasus.isi.edu/workflows/outputfile"
term="data/output/mosaic.jpg" size="2478" label="An
output file"/>
</entry>

Figure 3: A snippet of the WHIP manifest.

5. EVALUATION
In order to evaluate the benefits of the proposed approach, we
measured the amount of disk space needed to store provenance
information in the traditional approach versus our pipeline
provenance model. In the traditional approach all the information
about the input, intermediate, and final data are stored as well as
the workflow description and all the information associated with
its execution.
Table 1 shows the disk space needed to store provenance
information about Montage workflows of various sizes. As the
size of the mosaics increases from 0.5 degree squares of the sky to
8 degree squares, so does the size of the input data and the size of
the workflow to be executed. We distinguish between input data,
intermediate data which are generated and consumed as part of the
workflow execution, and the output data which correspond to the
desired mosaic. The code represents the Montage code base, but
does not include the workflow management code. The latter is
included in the virtual image described below. The workflow
specification is the size of the workflow as it is described in XML.
The specification is in a form of a Directed Acyclic Graph, where
the nodes of the graph represent the computations and their input
and output data. The dependencies between the computations are
also specified. The VM size corresponds to the size of the virtual
machine image, which includes Fedora 8 with Java, Pegasus,
Condor, Globus and some miscellaneous packages for Perl, C,
C++, etc. This VM can be deployed on a cloud such as Amazon
EC2 [23] or another virtual environment and be used as a host for
the workflow computations. The full execution directory
corresponds to all the files needed for the workflow engine to
submit the workflow to the execution environment as well as all
the logging information generated during the workflow execution.
In the traditional provenance model all the information above
would be considered a part of the provenance record and would
be stored. While this enables queries to be performed without the
need for re-execution, this also adds significantly to the storage
overhead.
In order to conduct a preliminary evaluation of our approach, we
measured the data footprint of the traditional and pipeline
provenance approach for the Montage application when managed
by the Pegasus Workflow Management System. The results are
shown in Figure 4. The X-axis shows the size of the Montage
mosaic in degrees square. The Y-axis shows the total data
footprint in megabytes (on a logarithmic scale). We plotted four
different quantities: 1) the data footprint of the traditional

provenance approach, which saves everything seen in Table 1
with the exception of the VM, 2) the same quantity as 1) but
includes the Virtual Machine image, 3) the data footprint of the
proposed pipeline-centric provenance model, and 4) the data
footprint of the pipeline-centric model as implemented in the
WHIP format, which compresses the elements of the bundle.
In the pipeline-centric provenance package we included:
• The Metadata which includes the creator of the bundle, date

of creation, workflow format

• The workflow description

• The input data

• A reference to the VM image
We can see that in this case the pipeline-centric approach is on
average 70% more efficient in terms of storage than the traditional
approach. Additionally, when the pipeline-centric approach is
implemented as a WHIP bundle, this improvement grows to
almost 90% (although one could argue that the traditional
provenance records can be compressed as well). If we include
only references to the input data rather than the data themselves,
as can be done for applications that access well maintained data
archives, then the bundles would be even smaller.

Figure 4: Data Footprint of Different Approaches to

Provenance.

A drawback of our approach is that having only partial
provenance records requires the workflow to be re-executed when
a user wants to inspect or query the records. Thus we have the
classic space versus time tradeoff. In our model, we assume that
provenance data will not be frequently inspected or queried and

Mosaic
Size

Input Data Intermediate
Data

Output
Data

Code Workflow
Specification

VM Size Full Exec
Dir

Total

0.5 31.50MB 251.7 MB 56.3 MB 49 MB 0.081 MB 759.8 MB 1.2 MB 1,149.581 MB

1 94.5MB 767 MB 204 MB 49 MB 0.2607 MB 759.8 MB 3.2 MB 1,877.7607 MB

2 302.4MB 2504 MB 796 MB 49 MB 8769 MB 759.8 MB 11 MB 1,3191.2 MB

4 1224.3MB 10300 MB 3269 MB 49 MB 3.8 MB 759.8 MB 44 MB 1,5649.9 MB

6 2578.8 MB 21938 MB 7396 MB 49 MB 8 MB 759.8 MB 92 MB 3,2821.6 MB

8 4414.2 MB 37951 MB 13191 MB 49 MB 14 MB 759.8 MB 160 MB 5,6539 MB

Table 1: Data size of various Montage Workflow Artifacts.

thus re-execution will not be expensive. However, if some data
are more popular than others, it may be beneficial to keep their
full provenance records to be able to efficiently answer
provenance queries.
In order to quantify the cost (in time) of workflow re-execution,
we show the runtime of Montage on an Amazon EC2 extra large,
64-bit, high CPU instance with 7 GB of memory, 8 virtual cores
with 2.5 EC2 Compute Units each, 1690 GB of instance storage,
and high I/O performance. The cost of such an instance is $0.80
per instance hour (http://aws.amazon.com/ec2/instance-types/).
Figure 4 shows the runtime of Montage on such an instance.

Figure 4: Runtime of Montage on a Large Instance of EC2.

For the largest size mosaic (8 degrees square) the runtime is just
over 2 hours on the average, for a cost of $2.40. Generating 2 or 4
degree square mosaic takes less than 30 minutes and costs $0.80.

6. RELATED WORK
A number of systems and approaches have been developed to
address provenance in e-Science applications. Bose and Frew [3]
provide an extensive overview of provenance systems. Simmahn
et al. [4] discuss various provenance systems for use in e-Science.
Some systems, such as PASS [24], are execution-centric, focusing
on gathering runtime information in the context of interactive
applications. Other systems, such as Taverna [25], use a workflow
to organize provenance information at runtime [26]. Finally, the
database community has focused on the provenance of derived
tuples. A good example of an extended database is Trio [27].
Unlike database systems, the applications we consider run on
heterogeneous data (usually in the form of files) using complex
codes. Execution-centric systems cater to more interactive
applications whereas the applications we consider are well defined
at the outset. The pipeline centric provenance model is closest to
workflow-centric models. However, these models are not focused
on re-execution as the mechanism to retrieve provenance. Instead,
they use the workflow as a way to structure provenance
information.
The closest work to our approach is the Virtual Data System
(VDS) [28]. In this approach, provenance queries are, in some
cases, answered by re-executing a workflow to retrieve
intermediate results as suggested by the pipeline provenance
model. Our work differs in that VDS uses a centralized database
to store provenance data whereas our model focuses on collecting
provenance information into an easily transportable package.

Additionally, our work helps users understand when a provenance
system based on re-execution is appropriate for their application.
Lastly, unlike VDS, we focus on the storage advantages of this
approach.
Other work has considered how to efficiently store provenance
information. Chapman et al. describe a series of “provenance
factorization” algorithms that find common subtrees in a
provenance graph, which can be then collapsed to reduce the size
of the provenance graph [29]. Heinis and Alonso describe an
interval representation for provenance graphs that significantly
reduces their size [30]. Groth et al. describe the use of references
to reduce the size of provenance graphs [31]. The pipeline
provenance model differs from these approaches in that it uses the
notion of reproducibility to compress provenance information.
However, unlike these methods, our approach may have
significant query time impact because of the need for re-execution
to retrieve intermediate data.
The concept of reproducibility has been discussed widely as a
motivating factor for provenance [32]. There is a broad movement
to encourage reproducible science (http://www.rrplanet.com). Our
approach is not just to use provenance for reproducibility, but use
the notion of reproducibility as the basis for provenance capture.

7. CONCLUSIONS
The pipeline-centric provenance model provides a packaging
mechanism to capture the provenance of data produced by a class
of applications common in e-Science. While this model can
capture the data necessary to cover our example use-cases from
Montage there is still work to be done to enable querying of these
packages. We plan to add a query mechanism that transparently
re-executes workflows to determine the provenance of
intermediate data products. This query mechanism will support
the retrieval of remotely stored data. We envision that the results
of provenance queries will be returned as an Open Provenance
Model graph [33] enabling interoperability between pipeline-
centric provenance packages and other provenance systems. Once
this query mechanism has been developed, we aim to measure the
overhead of query by re-execution in comparison to standard
query mechanisms that store all intermediate data. This will allow
for the characterization of the trade-off between storage overhead
and query time.
Both provenance and reproducibility are fundamental parts of the
scientific process. For a certain class of scientific applications, the
ability to reproduce a result can provide enough information to
determine the provenance of output data. In this paper, we have
described a pipeline-centric provenance model that captures all
necessary information for provenance in a single package.
Furthermore, we have shown using an initial set of experiments
that significant storage reductions can be achieved using this
model. Finally, we have described the type of applications that are
suitable for this model. This work is the first step towards a
greater understanding of the intersection of provenance and
reproducibility in scientific workflow- based applications.

8. ACKNOWLEDGMENTS
The authors would like to acknowledge the support of the
National Science Foundation under the SciFlow grant (CCF-
0725332).

9. REFERENCES
[1] L. Moreau, P. Groth, S. Miles, J. Vazquez, J. Ibbotson, S.

Jiang, S. Munroe, O. Rana, A. Schreiber, V. Tan, and L.
Varga, "The Provenance of Electronic Data,"
Communications of the ACM,, 2008.

[2] Y. Gil, E. Deelman, M. Ellisman, T. Fahringer, G. Fox, D.
Gannon, C. Goble, M. Livny, L. Moreau, and J. Myers,
"Examining the Challenges of Scientific Workflows," IEEE
Computer, vol. 40, pp. 24-32, 2007.

[3] R. Bose and J. Frew, "Lineage retrieval for scientific data
processing: a survey," ACM Computing Surveys, vol. 37,
pp. 1-28, 2005.

[4] Y. L. Simmhan, B. Plale, and D. Gannon, "A survey of data
provenance in e-science," SIGMOD Record, vol. 34, pp. 31-
36, 2005.

[5] Workflows in e-Science. I. Taylor, E. Deelman, D. Gannon,
and M. Shields, Eds.: Springer, 2006.

[6] E. Deelman, D. Gannon, M. Shields, and I. Taylor,
"Workflows and e-Science: An overview of workflow
system features and capabilities," Future Generation
Computer Systems, p. doi:10.1016/j.future.2008.06.012,
2008.

[7] G. B. Berriman, E. Deelman, J. Good, J. Jacob, D. S. Katz,
C. Kesselman, A. Laity, T. A. Prince, G. Singh, and M.-H.
Su, "Montage: A Grid Enabled Engine for Delivering
Custom Science-Grade Mosaics On Demand," in SPIE
Conference 5487: Astronomical Telescopes, 2004.

[8] "Montage." http://montage.ipac.caltech.edu
[9] B. Berriman, A. Bergou, E. Deelman, J. Good, J. Jacob, D.

Katz, C. Kesselman, A. Laity, G. Singh, M.-H. Su, and R.
Williams, "Montage: A Grid-Enabled Image Mosaic
Service for the NVO," in Astronomical Data Analysis
Software & Systems (ADASS) XIII, 2003.

[10] Z. Ivezic, J. Tyson, R. Allsman, J. Andrew, R. Angel, T.
Axelrod, J. Barr, A. Becker, J. Becla, and C. Beldica,
"LSST: from science drivers to reference design and
anticipated data products," 2008.

[11] "Flexible Image Transport System."
http://fits.gsfc.nasa.gov/

[12] M. F. Skrutskie, S. E. Schneider, R. Stiening, S. E. Strom,
M. D. Weinberg, C. Beichman, T. Chester, R. Cutri, C.
Lonsdale, and J. Elias, "The Two Micron All Sky Survey
(2MASS): Overview and Status," In The Impact of Large
Scale Near-IR Sky Surveys, eds. F. Garzon et al., p. 25.
Dordrecht: Kluwer Academic Publishing Company, 1997.,
1997.

[13] E. Deelman, K. Blackburn, P. Ehrens, C. Kesselman, S.
Koranda, A. Lazzarini, G. Mehta, L. Meshkat, L. Pearlman,
K. Blackburn, and R. Williams., "GriPhyN and LIGO,
Building a Virtual Data Grid for Gravitational Wave
Scientists," in 11th Intl Symposium on High Performance
Distributed Computing, 2002.

[14] E. Deelman, I. Foster, C. Kesselman, and M. Livny,
"Representing Virtual Data: A Catalog Architecture for
Location and Materialization Transparency," Technical
Report GriPhyN-2001-14, 2001.

[15] E. Deelman, G. Singh, M.-H. Su, J. Blythe, Y. Gil, C.
Kesselman, G. Mehta, K. Vahi, G. B. Berriman, J. Good, A.
Laity, J. C. Jacob, and D. S. Katz, "Pegasus: a Framework
for Mapping Complex Scientific Workflows onto

Distributed Systems," Scientific Programming Journal, vol.
13, pp. 219-237, 2005.

[16] C. A. Goble and D. C. De Roure, "myExperiment: social
networking for workflow-using e-scientists," Proceedings
of the 2nd workshop on Workflows in support of large-scale
science, pp. 1-2, 2007.

[17] N. Podhorszki, B. Ludaescher, I. Altintas, S. Bowers, and
T. McPhillips, "Recording Data Provenance for Kepler
Scientific Workflows," Concurrency and Computation:
Practice and Experience, 2007.

[18] Globus, "www.globus.org," 2006.
[19] "Condor." http://www.cs.wisc.edu/condor
[20] E. Deelman, G. Mehta, G. Singh, M.-H. Su, and K. Vahi,

"Pegasus: Mapping Large-Scale Workflows to Distributed
Resources," in Workflows in e-Science, I. Taylor, E.
Deelman, D. Gannon, and M. Shields, Eds.: Springer, 2006.

[21] "Pegasus." http://pegasus.isi.edu
[22] R. Boisvert, S. Browne, J. Dongarra, and E. Grosse,

"Digital Software and Data Repositories for Support of
Scientific Computing," in Advances in Digital Libraries:
Springer-Verlag, NY, 1996.

[23] "Amazon Elastic Compute Cloud."
http://aws.amazon.com/ec2/

[24] K.-K. Muniswamy-Reddy, D. A. Holland, U. Braun, and M.
Seltzer, "Provenance-Aware Storage Systems," in USENIX
Annual Technical Conference, Boston, MA, 2006.

[25] T. Oinn, P. Li, D. B. Kell, C. Goble, A. Goderis, M.
Greenwood, D. Hull, R. Stevens, D. Turi, and J. Zhao,
"Taverna/myGrid: Aligning a Workflow System with the
Life Sciences Community," in Workflows in e-Science, I.
Taylor, E. Deelman, D. Gannon, and M. Shields, Eds.:
Springer, 2006.

[26] J. Zhao, C. Goble, R. Stevens, and D. Turi, "Mining
Taverna's semantic web of provenance," Concurrency and
Computation: Practice and Experience, vol. 20, pp. 463-
472, 2008.

[27] P. Agrawal, O. Benjelloun, A. Sarma, C. Hayworth, S.
Nabar, T. Sugihara, and J. Widom, "Trio: A system for data,
uncertainty, and lineage," in 32nd international conference
on Very large data 2006, pp. 1151-1154.

[28] B. Clifford, I. Foster, J. Voeckler, M. Wilde, and Y. Zhao,
"Tracking provenance in a virtual data grid,"
CONCURRENCY AND COMPUTATION, vol. 20, p. 565,
2008.

[29] A. Chapman, H. Jagadish, and P. Ramanan, "Efficient
provenance storage," in 2008 ACM SIGMOD international
Conference on Management of Data, 2008, pp. 993-1006.

[30] T. Heinis and G. Alonso, "Efficient lineage tracking for
scientific workflows," in 2008 ACM SIGMOD international
Conference on Management of Data, 2008, pp. 1007-1018.

[31] P. Groth, S. Miles, and L. Moreau, "A model of process
documentation to determine provenance in mash-ups,"
ACM Trans. Internet Technologies, 2009.

[32] B. Levine and M. Liberatore, "DEX: Digital Evidence
Provenance Supporting Reproducibility and Comparison,"
in DFRWS Annual Conference, 2009.

[33] L. Moreau, J. Freire, J. Futrelle, R. E. McGrath, J. Myers,
and P. Paulson, "The Open Provenance Model," University
of Southampton2007.

http://montage.ipac.caltech.edu/�
http://fits.gsfc.nasa.gov/�
http://www.globus.org,/�
http://www.cs.wisc.edu/condor�
http://pegasus.isi.edu/�
http://aws.amazon.com/ec2/�

	1. INTRODUCTION
	2. Provenance in Astronomy Applications
	2.1 Use Case 1:
	2.2 Use Case 2
	2.3 Use Case 3
	2.4 Use Case 4
	2.5 Montage—A commonly used astronomy application

	3. CLASS OF APPLICATIONS
	4. PIPELINE-CENTRIC PROVENANCE MODEL
	4.1 A Pipeline-Centric Provenance Package
	4.2 Storage Efficiencies through References

	5. EVALUATION
	6. RELATED WORK
	7. CONCLUSIONS
	8. ACKNOWLEDGMENTS
	9. REFERENCES

