
Montage Baseline Background Correction

2MASS Background Correction
The 2MASS images have a great deal of image-to-image background variation. This is a
result of difference between and variability in the airmass through which the observations
were take.

Our baseline background correction algorithm attempts to compensate for this by
performing a lower-envelope least squares plane fit to the individual images, hoping that
by bringing all image background to zero, it will be possible to mosaic them together
with a minimum of seams.

The first image below shows the data coadded with no background removed. The second
shows the results of this baseline correction algorithm. The baselining for some of the
smaller image fragments around the periphery is less stabe (given the smaller amount of
data to work with).

The algorithm does remove the gross background differences, though there are clearly
finer adjustments that require analysis of the overlap regions.

Raw coadd

Coadd after baseline background correction

2MASS Baseline Software
2MASS baseline background removal was implemented using three discrete, standalone
programs (in ANSI C). These have been tested on a Sun Ultra 5 workstation (Solaris 2.8).
The modules are:

mImgtbl Extracts the FITS header geometry information from a set of
files and creates an ASCII image metadata table from it used
by several of the other programs.

mFitplane Fit a plane (excluding outlier pixels) to an image. Output is
the plane parameters (used by mBackground)

mBackground Remove a background from a single image (planar has
proven to be adequate for the images we have dealt with).

mFlattenExec Run mFitplane and then mBackground on all the images in
the metadata table

All these programs are run entirely from the command line and all return a structured
response for which we have parsing code. Given no arguments, each program responds
with a short usage summary. Each also has built-in debugging that can be turned on,
though as usual with debugging output, it is mainly useful to the originally develper.

2MASS Background Correction Procedure
The general procedure for using these program should be obvious from the above
descriptions. The example packaged with the code has a subdirectory for the code, one
for the images to be background corrected and one for the corrected images:

 |- 980702s-j0910009.fits
 |- 980702s-j0910009_area.fits
 | .
 |- uncorrected -| .
 | | .
 | |- 980814s-j0500009.fits
 | |- 980814s-j0500009_area.fits
 |
 |
 | |-
 |- corrected -| (initially empty)
 | |-

 |
 2massgb -|
 | |- mFitplane.c
 |- Montage -|- mBackground.c (background removal
programs)
 | |- mFlattenExec.c
 |
 |
 |- Imgtbl -|- mImgtbl.c (image metadata summary
program)
 |
 |
 | |- include
 | |
 | | |- mtbl
 |- lib -| |- svc (source code for various
 |- src -|- coord off-the-shelf libraries)
 |- cfitsio-2.300
 |- wcstools-3.0.5

The software can be built from the top of the directory tree using the rudimentary
Makefile found there (there are more complete Makefiles in each of the source
directories).

The sequence of commands used for the timing test is as follows:

 make
 cd uncorrected
 ../bin/mImgtbl . images.tbl
 ../bin/mFlattenExec images.tbl ../corrected -d

The -d option on the last command turns on debugging, which includes the times (wall
clock) each program takes.

2MASS Timing Results
Below are the times for a few of the images in the test set when run on a Sun Ultra 5
workstation (Solaris 2.8). Some of the images in the test set are fairly small (the ones
around the periphery in the image above) and run faster but these are typical of the time
to correct full images:

 [mFitplane ./2mass-atlas-980702s-j0910044.fits]
 [mBackground ./2mass-atlas-980702s-j0910044.fits
 ../corrected/./2mass-atlas-980702s-j0910044.fits
 6.37174e-05 9.85556e-03 1.14975e+02 1331.22 855.05]

 Time: 11 seconds

 [mFitplane ./2mass-atlas-980702s-j0920233.fits]
 [mBackground ./2mass-atlas-980702s-j0920233.fits
 ../corrected/./2mass-atlas-980702s-j0920233.fits
 -1.33085e-03 -3.16278e-03 3.13931e+02 1030.57 709.37]

 Time: 14 seconds

 [mFitplane ./2mass-atlas-980702s-j0920245.fits]
 [mBackground ./2mass-atlas-980702s-j0920245.fits
 ../corrected/./2mass-atlas-980702s-j0920245.fits
 -2.99051e-03 -6.01130e-03 3.15664e+02 1028.48 -37.81]

 Time: 13 seconds

 [mFitplane ./2mass-atlas-980702s-j0920257.fits]
 [mBackground ./2mass-atlas-980702s-j0920257.fits
 ../corrected/./2mass-atlas-980702s-j0920257.fits
 -1.80820e-03 -3.03723e-05 3.18274e+02 1027.69 -873.17]

 Time: 13 seconds

 [mFitplane ./2mass-atlas-980702s-j0930021.fits]
 [mBackground ./2mass-atlas-980702s-j0930021.fits
 ../corrected/./2mass-atlas-980702s-j0930021.fits
 2.12610e-04 6.97836e-04 1.13398e+02 678.59 -668.63]

 Time: 14 seconds

 [mFitplane ./2mass-atlas-980702s-j0930044.fits]
 [mBackground ./2mass-atlas-980702s-j0930044.fits
 ../corrected/./2mass-atlas-980702s-j0930044.fits
 -1.13888e-02 5.72135e-03 1.17063e+02 676.03 869.91]

 Time: 13 seconds

The average time per image is approximately 13 seconds. Since there are 5834400
images in the 2MASS archive, this would translate into approximately 7.8E7 CPU
seconds or 2.4 CPU years total processing.

DPOSS Background Correction

The DPOSS background correction used to date uses a similar approach though the
details differ a fair amount.

DPOSS images are quite large (23500 x 23500 pixels / 2 bytes per pixel: total 1.1 Gbyte)
and cover more than 6 degrees on the sky. There are a total of 879 DPOSS plate
locations, in 3 filters, or 2637 images total.

The background can have appreciable curvature and the data for the individual images
have been fit here by a second order polynomial. No lower envelope processing was
used; the result therefore requires no iteration but will be affected by bright regions in the
image (i.e., non-background pixels are used in the fitting).

The quadratic form used was:

 I = I0 + A*x + B*y + C*x*x + D*x*y + E*y*y.

where I is the image pixel intensity and (x,y) are the pixel coordinates (I0, A, B, C, D,
and E are the free parameters to be fit). For the test image, these coefficients are printed
below:

 I0 = 4752
 A = 6
 B = 162
 C = -99
 D = -39
 E = -169

DPOSS Background Correction Procedure
The code for performing the above procedure can be obtained by contacting Montage.
The steps in building and running are:

• Untar the file
• cd flatten
• look at the Makefile for the C compiler, it is currently set to "gcc -O".
• make
• look at the script "flatten". It needs a directory called "plates" for input and

another "platesflat" for output. Also change "file" to be the one you want to
flatten.

• flatten

Given the size of the DPOSS images, no data is included in the tar file. Please contact the
Montage project to arrange for example data.

DPOSS Timing Results
This backgrounding code was run on a single processor of an HP Superdome -- the
processor is PA8600 at 550 MHz. Processing took 660 seconds for each plate, or about
20 days for the whole 3 Tbyte DPOSS.

