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Abstract. In this paper we examine the issue of optimizing disk usage and scheduling large-scale scientific workflows onto
distributed resources where the workflows are data-intensive, requiring large amounts of data storage, and the resources have
limited storage resources. Our approach is two-fold: we minimize the amount of space a workflow requires during execution by
removing data files at runtime when they are no longer needed and we demonstrate that workflows may have to be restructured to
reduce the overall data footprint of the workflow. We show the results of our data management and workflow restructuring solutions
using a Laser Interferometer Gravitational-Wave Observatory (LIGO) application and an astronomy application, Montage, running
on a large-scale production grid-the Open Science Grid. We show that although reducing the data footprint of Montage by 48% can
be achieved with dynamic data cleanup techniques, LIGO Scientific Collaboration workflows require additional restructuring to
achieve a 56% reduction in data space usage. We also examine the cost of the workflow restructuring in terms of the application’s
runtime.

1. Introduction

Today, scientific analyses are frequently composed
of several application components, each often designed
and tuned by a different researcher. Scientific work-
flows [6] have emerged as a means of combining indi-
vidual application components into large-scale analysis
by defining the interactions between the components
and the data that they rely on. Scientific workflows pro-
vide a systematic way to capture scientific methodolo-
gy by supplying a detailed trace (provenance) of how
the results were obtained. Additionally, workflows are
collaboratively designed, assembled, validated, and an-
alyzed. Workflows can be shared in the same manner

that data collections and compute resources are shared
today among communities. The scale of the analy-
sis and thus of the workflows often necessitates that
substantial computational and data resources be used
to generate the required results. CyberInfrastructure
projects such as the TeraGrid [2] and the Open Science
Grid (OSG) [4] can provide an execution platform for
workflows, but they require a significant amount of ex-
pertise on the part of the scientist to be able to make
efficient use of them.

Pegasus [21,23,24] which stands for Planning for
Execution in Grids, is a workflow mapping engine that
is used day-to-day to map complex, large-scale sci-
entific workflows with thousands of tasks processing
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terabytes of data onto the Grid. Some examples in-
clude applications in physics [20], astronomy [13,14],
gravitational-wave science [19], as well as earthquake
science [22,31], neuroscience [29], and others [33,34].
Pegasus bridges the scientific domain and the execution
environment by automatically mapping the high-level
workflow descriptions onto distributed resources such
as the TeraGrid, the Open Science Grid, and others.
Pegasus relies on the Condor DAGMan [1] workflow
engine to launch workflow tasks and maintain the de-
pendencies between them. Pegasus enables scientists
to construct workflows in abstract terms without worry-
ing about the details of the underlying CyberInfrastruc-
ture or the particulars of the low-level specifications
required by the underlying middleware (Globus [26] or
Condor [30]).

As a part of the mapping, Pegasus automatically
manages data generated during workflow execution by
staging them out to user-specified locations, by regis-
tering them in data registries, and by capturing their
provenance information. When workflows are mapped
onto distributed resources, issues of performance relat-
ed to workflow job scheduling and data replica selec-
tion are most often the primary drivers in optimizing
the mapping. However, in the case of data-intensive
workflows it is possible that typical workflow mapping
techniques produce workflows that are unable to exe-
cute due to the lack of disk space necessary for the suc-
cessful execution. In this paper we examine the issue
of minimizing the amount of storage space that a work-
flow requires for execution, also called the workflow
data footprint. In some cases, we also demonstrate that
workflow restructuring is needed to obtain a reduction
in the workflow data footprint.

The remainder of the paper is organized as follows.
The next section provides further motivation for this
work by examining a Laser Interferometer Gravitation-
al Wave Observatory (LIGO) [10] Scientific Collabo-
ration (LSC) application, which requires large amounts
of storage space and targets the OSG as its execution
environment and an astronomy application called Mon-
tage [15]. These applications exhibit behaviors found
in many scientific workflows used today. Section 3
describes two data cleanup algorithms for reducing the
amount of space required by a workflow by dynami-
cally removing files when they are no longer required
while the workflow is executing. Section 4 shows the
simulation and experimental results of applying the
cleanup algorithm to the LSC and Montage application
and discusses the reasons for limited improvement in
the case of the LSC workflow. In Section 5 we exam-

ine workflow restructuring as a means of reducing the
data footprint of the LSC workflow and present results
for the restructured workflow. Section 6 follows up
with a discussion on the issues of restructuring of the
LIGO workflow from the science perspective. Final-
ly, we give an overview of related work and include
concluding remarks.

2. Motivation

Many applications today are structured as workflows.
Some examples of such applications that are being rou-
tinely used in large-scale collaborations are the LSC’s
binary inspiral search [17] and the Montage applica-
tion. Here we describe them both and focus on their
computational requirements.

2.1. Laser-Interferometer Gravitational-Wave
Observatory

LIGO is a network of gravitational-wave detectors,
one located in Livingston, LA and two co-located in
Hanford, WA. The observatories’ mission is to detect
and measure gravitational waves predicted by general
relativity-Einstein’s theory of gravity-in which gravity
is described as due to the curvature of the fabric of
time and space. One well-studied phenomenon which
is expected to be a source of gravitational waves is the
inspiral and coalescence of a pair of dense, massive
astrophysical objects such as neutron stars and black
holes. Such binary inspiral signals are among the most
promising sources for LIGO [8,9]. Gravitational waves
interact extremely weakly with matter, and the measur-
able effects produced in terrestrial instruments by their
passage will be miniscule. In order to increase the prob-
ability of detection, a large amount of data needs to be
acquired and analyzed which contains the strain signal
that measures the passage of gravitational waves. LSC
applications often require on the order of a terabyte of
data to produce meaningful results.

Data from the LIGO detectors is analyzed by the
LIGO Scientific Collaboration (LSC) which possess-
es many project-wide computational resources. Addi-
tional resources would allow the LSC to increase its
science goals. Thus, the LSC has been reaching out to-
ward Grid deployments such as the OSG to extend their
own capabilities. OSG supports the computations of a
variety of scientific projects ranging from high-energy
physics, biology, material science, and many others.
The shared nature of OSG resources imposes limits on
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the amount of computational power and data storage
available to any particular application. A scientifically
meaningful run of the binary inspiral analysis requires
a minimum of 221 GBytes of gravitational-wave da-
ta and approximately 70,000 computational workflow
tasks.

The LIGO Virtual Organization (VO) is supported on
nine distinct Compute Elements managed by other in-
stitutions supporting the OSG. Each Compute Element
is a High Performance Computing or High Through-
put Computing resource, with, on average, 258 GB
of shared scratch disk space. The shared scratch disk
space is used by approximately 20 VOs within the OSG.
The LIGO VO can not reserve space on these shared
resources. Thus reducing the disk space requirements
of the LSC application minimizes the risk of failure due
to lack of storage space.

2.2. Montage

Montage [3,14] is an application that constructs cus-
tom science-grade astronomical image mosaics on de-
mand based on several existing images. The inputs
to the workflow include the input images in standard
FITS format (a file format used throughout the astron-
omy community) taken from image archives such as
2MASS [5] and a “template header file” that specifies
the mosaic to be constructed. The input images are first
reprojected to the coordinate space of the output mosa-
ic, the reprojected images are then background rectified
and finally coadded to create the final output mosaic.
Figure 1 shows the structure of a small Montage work-
flow with tasks represented by the vertices and edges
representing the data dependencies between the tasks.
In order to facilitate subsequent discussion, we assign
a level to each task in the workflow. The tasks with no
parents are defined to be at level one and the level of
any other task in the workflow is the maximum level
of any of its parents plus one. The levels of the tasks
in the workflow in Fig. 1 are shown by the numbers in
the vertices representing these tasks. The figure only
shows the graph of the resource-independent abstract
workflow. The executable workflow will additionally
contain data transfer, registration nodes, and optionally
data cleanup nodes.

Montage workflows typically contain a large number
of tasks that process large amounts of data. Consider-
ing a workflow for creating a representative 2 degree
square mosaic of 2MASS images centered around the
celestial object M17, Table 1 gives a description of the
number of tasks at each level of the workflow and the

average amount of input data required and output data
produced by each task at the level. All the tasks at a
particular level are invocations of the same program,
such as mProjectfor level one. The actual workflow
has 4 more levels in addition to the 7 shown in Table 1
and these remaining levels consists of tasks for creating
a visualizable image of the mosaic.

As the sizes of the mosaics increase, the data pro-
cessed and generated in the workflow increase. In the
near future Montage will be provided as a service to the
astronomy community. It is expected that there will be
many simultaneous mosaics being generated based on
the user requests, and thus it will become important to
minimize the data footprint of each workflow.

3. Approach

The first algorithm (Fig. 3) described in this section
adds a cleanup job for a data file when that file is no
longer required by other tasks in the workflow or when
it has already been transferred to permanent storage.
The purpose of the cleanup job is to delete the data file
from a specified computational resource to make room
for the subsequent computations. Since a data file can
be potentially replicated on multiple resources (in case
the compute tasks are mapped to multiple resources) the
decisions to add cleanup jobs are made on a per resource
basis. The algorithm is applied after the executable
workflow has been created but before the workflow is
executed.

In order to illustrate the working of the algorithm,
Fig. 2(a) shows an executable workflow containing 7
compute jobs {0,1,..,6} mapped to 2 resources {0,1}.
The algorithm first creates a subgraph of the executable
workflow for each execution resource used in the work-
flow. The subgraph of the workflow on resource 0 con-
tains jobs {0,1,3,4} and the subgraph on resource 1
contains jobs {2,5,6}. The cleanup nodes added to this
workflow using the algorithm are shown in Fig. 2(b).
The cleanup job for removing file f on resource r is
denoted as Cfr.

For each task in the subgraph, a list of files either
required or produced by the task is constructed. For
example, the list of files for task 1 mapped to resource
0 contains files b and c. For each file in the list, a
cleanup job for that file on that resource is created (if it
does not already exist) and the task is made the parent
of the cleanup job. Thus, a cleanup job, Cc0, which
will remove file c on resource 0 is created and task 1
is made the parent of this cleanup job. The cleanup
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Table 1
Characteristics of the tasks/transformations in the 2 degree square montage workflow

Level Transformation name Description No. of jobs Approximate size
at the level of data input/output

for each job (MB)

1 mProject Reprojects a single image to the image parameters and footprints
defined in a header file.

152 4.2 / 8.1

2 mDiffFit Finds the difference between two images and fits a plane to that
difference image

410 16.3 / 0.6

3 mConcatFit Does a simple concatenation of the plane fit parameters from mul-
tiple mDiffFit jobs into a single file

1 0.12 / 0.08

4 mBgModel Models the sky background using the plane fit parameters from
mDiffFit and computes planar corrections for the input images that
will rectify the background across the entire mosaic

1 0.1 / 0.007

5 mBackground Applies the planar correction to a single image 410 8.1 / 8.1
6 mImgtbl Extracts the FITS header geometry information from a set of files

and stores it in an image metadata table
4 407.6 / 0.01

7 mAdd Co-adds a set of reprojected images to produce a mosaic as specified
in a template header file

4 407.6 / 272.4
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Fig. 1. A small Montage workflow.

jobs for some files might already have been created
as a result of parsing previous tasks. For example,
the cleanup job Cb0 for removing file b on resource
0 already exists (as a result of parsing task 0). In
this case the task being parsed is added as a parent of
the cleanup job. Thus, task 1 is added as a parent of
cleanup job Cb0. When the entire subgraph has been
traversed, there exists one cleanup job for every file
required or produced by tasks mapped to the resource.
If a file required by a task is being staged-in from
another resource, then the algorithm makes the cleanup
job for the file on the source resource a child of the

stage-in job, ensuring that the file is not cleaned up on
the source resource before it is transferred to the target
resource. For example, file b required by task 2 mapped
to resource 1 is being staged-in from resource 0 using
stage-in job Ib012, and so the cleanup job for file b on
resource 0 (Cb0) is made a child of Ib012. Finally, if a
file produced by a task is being staged-out to a storage
location, the cleanup job is made a child of the stage-
out job. For instance, the cleanup job Ch0 for removing
file h on resource 0 is made a child of the stage-out
job Soh that stages out file h to permanent storage.
By adding the appropriate dependencies, the algorithm
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Fig. 2. (a) The original executable workflow mapped by Pegasus to two resources. (b) The workflow with dynamic cleanup nodes added.

Input: Executable Workflow, r = 1..R (list of resources) 
Output: Executable Workflow including cleanup jobs 
 
Method AddCleanUpJobs 
For every resource r = 1..R 

Let Gr=(Vr,Er) be the subgraph induced by the tasks mapped to resource r 
For every job j in Vr  

For every file f required by j 
create cleanUpJob Cfr for file f for resource r if it does not already exist 
add job j as parent of the cleanUpJob Cfr 
if file f is produced at another resource s 

Let Ifrsj = stage-in job for transferring file f from resource r to resource s for job j 
create cleanUpJob Cfs for file f at resource s if it does not exist and make Ifrsj  parent of Cfs 

End if 
End For 
For every file f produced by j 

create cleanUpJob Cfr for file f for resource r if it does not already exist 
add job j as parent of the cleanUpJob Cfr  
If f is being staged out to final storage, add Cfr as child of the stage-out job. 

End For 
End For 

End For          
End Method AddCleanUpJobs 

Fig. 3. Data cleanup algorithm, with one cleanup job per data file. The running time of the algorithm O(m), where m is the no of edges in the
abstract workflow.

makes sure that the file is cleaned up only when it is
no longer required by any task in the workflow. The
running time of the algorithm is O(e + n), where e
is the number of edges and n is the number of tasks
in the executable workflow assuming that each edge

represents the dependency of a particular file between
two tasks. Multiple file dependencies between two
tasks are represented by multiple edges. The algorithm
makes sure that the workflow cleans up the unnecessary
data files as it executes (by adding cleanup nodes to the
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executable workflow) and at the end there are no files
remaining on the execution resources.

In our initial work [35], we were able to achieve as
much as a 57% data footprint improvement for LSC-
like workflows in a simulated environment. Our next
step was to evaluate the performance of the algorithm
on a real application and a real grid. However, in order
to make the algorithm viable, we needed to improve
the algorithm in terms of the number of cleanup jobs
it added to the workflow and in terms of the number
of dependencies it introduced. The issue is that in-
creasing the number of tasks and dependencies in a
workflow increases the amount of time the workflow
engine spends managing the workflow and introduces
additional overheads to the overall workflow execution
because of the inherent overheads in scheduling jobs
onto distributed systems (job handling at the submis-
sion site, network latencies, queue time at the remote
resource, etc.). Because of these overheads, we decid-
ed to design an improved algorithm that will reduce
the number of cleanup tasks at the possible cost of the
workflow footprint.

The algorithm in Fig. 5 creates at most one cleanup
node per computational workflow task. The algorithms
works by creating a cleanup task per job in the work-
flow using the AddCleanUpJobsmethod resulting in the
workflow shown in Fig. 4 when applied to the workflow
in Fig. 2(a).

The method ReduceDependenciesis used within Ad-
dCleanUpJobsto eliminate unnecessary dependencies
between the cleanup and other jobs. Also the stage-
out and stage-in jobs are considered the same way as
compute jobs and are logically assigned to the source
resource from where they are transferring data. Thus
the stage-in jobs Ib012, Ie016 and stage-out job S0h are
treated as any other compute job mapped to resource 0
by the AddCleanUpJobs method.

The algorithm works as follows. The Add-
CleanUpJobsmethod first assigns a level to each task
in the workflow. The rest of the processing is done on
per resource basis. First it creates a priority queue of
leaf tasks mapped to that resource with the priorities
being their level values. For resource 0, the leaf tasks
are tasks S0h, Ie016 with each having a level value of 4.
The task with the highest priority in the queue is con-
sidered first. For example, assume that the task S0h is
first considered (other equivalent choice is Ie016, since
both have the same level). Since the only file required
by S0h is h, a cleanup job Ch0 is created to remove h
and Ch0 is made the child of S0h. The parents of S0h,
task 3 is then added to the priority queue. Next Ie016

Fig. 4. Resulting workflow after applying the improved cleanup
algorithm.

is considered and Ce0 is created and made the child
of Ie016. Its parent, task 4 is also added to the queue.
Thereafter either of task 3 or 4 may be considered. As-
suming task 3 is considered next, it requires files c and
h. However, since the cleanup job Ch0 already exists
to remove file h, task 3 is made the parent of Ch0 and
a new task Cc0 is created to remove the file c. Task 4
is next considered and it requires files c and e. Since
cleanup jobs already exist to remove these files, task
4 is simply made the parent of cleanup jobs Cc0 and
Ce0 and no new cleanup jobs are created. The rest of
the tasks are similarly processed. The use of a priority
queue results in a bottom-up traversal of the subgraph
mapped to resource 0. Once the subgraph has been tra-
versed, the method ReduceDependenciesis then used
to eliminate unnecessary dependencies from the work-
flow such as between the task 3 and clean job Ch0. This
is because task S0h is a child of task 3 and a parent of
cleanup job Ch0. Thus a direct dependency between
task 3 and Ch0 is not required.

The reason for the bottom-up traversal order of tasks
in AddCleanUpJobsmethod is that we want to asso-
ciate the cleanup job for a file with the last task in the
subgraph that uses the file and this is best done in a
bottom-up fashion. The complexity of this algorithm
is O( e * (e+n) ), where e is the number of edges in
the workflow with cleanup jobs and n is the number of
jobs .
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Method AddCleanUpJobs 
Assign 1 as level for the root jobs 
For every job j in the workflow in a topologically sorted order 

Level( j ) = Max( level( Parent( j ) ) ) + 1 
EndFor 
For every Resource i = 1 .. R 

Let Gi = (Vi , Ei) be the sub graph induced by the jobs mapped to Resource i . 
Let Leafi be the subset of Vi that are the leaf nodes of Gi 
Create a empty max priority queue, PQ 
For each job J in Leafi 

Insert J in PQ with its level being its priority 
EndFor 
While PQ is not empty , extract a job j from PQ with the highest level. 

Create a cleanup job new_cleanup 
For every file f used/produced by j 

If f is not already set to be cleaned up by another job, set new_cleanup to clean f. 
Else add j as the parent of the cleanup job which was already set to clean f 
EndIf. 

EndFor 
If new_cleanup cleans up at least one file, add it as the child of job j 
Add all parents of job j in Gi to PQ that don t already exist in PQ 

End While 
               For every CleanupJob C  created for the resource i  in the above loop. 

Reduce_Dependencies ( C , Gi ). 
End For 

EndFor 
End Method AddCleanUpJobs 

 
Method ReduceDependencies ( CleanupJob C , Graph Gi  ) 

Duplicates is an empty set of jobs. 
Mark all jobs in Gi as unvisited 
ListParents be the list of jobs that are direct parents of  C. 
For every Job J that is in ListParents 

If  J is not in Duplicates 
Initialize queue BFSq with all the parents of J. 
While BFSq is not empty 

Pop job uJ from BFSq. 
If uJ is not marked as visited 

Mark uJ as visited. 
If uJ is a member of ListParents  

Add uJ to Duplicates 
EndIf 
Add all unvisited parents of uJ to BFSq. 

End If 
End While 

End If 
End For 
Remove all edges between CleanupJob C and the jobs in Duplicates. 

End Method ReduceDependencies 

Fig. 5. Dynamic data cleanup algorithm, with one cleanup job per computational task.

4. Experiments

4.1. Setup

In this paper, we use two methods for evaluating our
approach: simulation and runs of the real applications
on the grid. For all the experiments, the workflows are
specified in an abstract format and then mapped onto
the resources by Pegasus in the case of real execution.
In the case of the simulator these resources are simu-
lated and in the case of the grid execution, we use the
resources of the Open Science Grid.

4.1.1. Simulation
The simulations are performed using a Java-based

grid simulator called GridSim [18]. This simulator can
be used to simulate any number of grid resources and
users. We added attributes to the task model in Grid-
Sim to explicitly model clean up jobs. In our experi-
ments, each simulated resource is a cluster of homoge-
neous processors with space sharing and a First Come
First Serve (FCFS) scheduling policy. The processing
speed of the resources and the bandwidth between the
users and resources can be configured and contention
for network resources is ignored. For the simulation
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experiments described in this paper, each resource was
a cluster of ten homogeneous processors.

4.1.2. Grid execution
For our grid execution,we use the Pegasus [21,23,24]

workflow mapping system to map a high-level work-
flow description onto the available resources and use
the Condor DAGMan [1] workflow execution engine
to execute the workflow on the mapped resources. Pe-
gasus locates the available resources and creates an ex-
ecutable workflow where the executable tasks are as-
signed to resources, where there are data transfer nodes
to stage data in and out of the computations, data regis-
tration nodes to register the intermediate data products
into registries, and in cases of workflows with dynam-
ic cleanup nodes, these will be included as well. The
executable workflow is given to DAGMan for execu-
tion. DAGMan follows the dependencies defined in the
workflow and releases the nodes that are ready to run
to a local Condor queue. Tasks destined for the grid are
sent to the grid resources using Condor-G [27]. The
final scheduling of these tasks is done by the resource
managers of the remote grid resources. As part of the
execution, the data is generated along with its associ-
ated metadata and any provenance information that is
collected.

4.2. Comparison of cleanup algorithms

In our first set of experiments, we compared the be-
havior of the two cleanup algorithms described in Sec-
tion 3. We performed the evaluation via simulation
and compared the number of cleanup jobs created by
each algorithm and the number of dependencies added
to the workflow. We performed the experiments using
both the LSC and Montage workflows containing 164
and 731 compute tasks respectively. Algorithm I rep-
resents the algorithm where one cleanup job is created
for every file, and Algorithm II represents the algorithm
where at most one cleanup job per compute job in the
workflow. Results in Table 2 show that Algorithm II
obtains a data footprint similar to that of Algorithm I
while also achieving a significant reduction in the num-
ber of cleanup tasks and dependencies. There is ap-
proximately a 40% reduction in the number of tasks
and almost 30% reduction in the number of dependen-
cies. All subsequent experiments described in this pa-
per were done using Algorithm II and this algorithm is
currently implemented in Pegasus.

4.3. Minimizing the workflow footprint with dynamic
cleanup

In our initial simulations [35], we have shown the
potential of using data cleanup techniques to reduce the
data footprint for LSC-like workflows. Here we ob-
serve the performance of the data cleanup algorithms
using real applications: Montage and LSC binary in-
spiral search workflow running on the Open Science
Grid. For reasons of clarity and to reduce the effect
of cross-site scheduling we focus our experiments on a
single grid site. However, the algorithms are also ap-
plicable when workflows are scheduled across multiple
sites.

Figure 6 shows the results of running the Montage
workflow, which creates a one degree square mosaic of
the M17 region of the sky. The graph shows the storage
usage of the workflow over time for both the original
workflow (without cleanup) and the workflow which
dynamically cleans up redundant data.

The dots signify the completion of a cleanup job.
For example, the third from last dot in Fig. 6 follows
a steep decline in the data footprint that signifies the
cleanup done by the job represented by the dot. We can
see that in this case we were able to reduce the overall
workflow data footprint from 1291.583 MB down to
714.545 MB, a saving of 44.676%. We conducted
similar experiments while increasing the size of the
mosaics to 2 and 4 degree square. Figures 7 and 8
show the results. For the 2 degree square mosaic the
data footprint was reduced from 4.659 GB to 2.421 GB
(48%) and for the 4 degree square mosaic from 16.24
to 9.687 GB (40.35%).

We also tested our data cleanup algorithm with a
small LSC workflow running on the OSG. Figure 9
shows the results. Although, based on our initial sim-
ulations [35] we expected a significant reduction in the
workflow data footprint, we were not able to see the
reduction when the actual workflow was executed on
the OSG. We noticed that cleanup is happening in the
workflow only after all the input data has already been
staged-in. We also measured the runtime overhead of
the cleanup tasks. The workflow without cleanup nodes
ran in 135 minutes, whereas the workflow with cleanup
nodes took 100 minutes. The difference in the run-
times can be attributed to the use of non-dedicated re-
sources and network latencies when scheduling work-
flow tasks over a wide area network. In the next section
we explore the reasons for not achieving a significant
reduction in the data workflow footprint for the LSC
workflow.
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Table 2
Comparison via simulation of the data cleanip algorithms, showing the reduction in the number
of cleanup tasks and the number of dependencies

LSC workflow Max space used (MBs) No of cleanup jobs No of dependencies

Algorithm I 1027.13 237 840
Algorithm II 1028.23 96 238

2-degree MONTAGE Max space used (MBs) No of cleanup jobs No of dependencies

Algorithm I 2405.71 2029 4211
Algorithm II 2409.71 731 1296

Fig. 6. One degree square Montage workflow data footprint over time.

4.4. Contributions to the workflow footprint

When analyzing the Montage and LSC workflows
we see that the opportunities for reducing the work-
flow footprint for Montage are inherent in the work-
flow whereas the ones in LSC workflow are limited.
The reduction in the workflow footprint results when
cleanup opportunities are present in the workflow be-
fore the maximum data footprint is reached. In order to
illustrate the difference between the Montage and LSC
workflow, we divide the workflow into levels. All the
tasks in the workflow that have no parent dependencies
are assigned level 1. The level of other tasks can be
assigned by a breadth-first traversal where the level of
any tasks is the maximum level of any of its parent
tasks plus one. The number inside the vertices in Fig. 1
shows the level number of the tasks in the Montage
Workflow. The 2 degree square Montage workflow has
11 levels while the LSC workflow has 6.

Assuming that all the level i tasks are executed be-
fore tasks in level (i + 1), Figs 10 and 11 show the
total workflow footprint (WFP) at the end of execution
of each level without any cleanup and when cleanup is
used for the LSC and Montage workflow respectively.
The difference between the two represents the cleanup
opportunity at each level of the workflow and is also
shown in the figure. The difference between the max-
imum WFP with and without cleanup across all levels
represents the maximum reduction in storage space for
the workflow. For the LSC workflow (Fig. 10), there
isn’t much difference between the maximum WFP with
and without cleanup. The reason is that most of data
used or generated by the workflow is already material-
ized by the end of level one and the cleanup opportuni-
ties are mostly absent until level five. For the Montage
workflow, the WFP without cleanup gradually increas-
es and cleanup opportunities exist across the workflow
(Fig. 11). Thus in this case, the maximum WFP with
cleanup is only about 28% of the value without cleanup
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Fig. 7. Two degree square Montage workflow data footprint over time.

Fig. 8. Four degree square Montage workflow data footprint over time.

and represents a 72% possible reduction in the foot-
print of the workflow. In our experiments however, we
do not achieve this ideal 72% reduction because the
workflow is not scheduled evenly level by level and
tasks from multiple levels might end up executing at
the same time. Nevertheless, this analysis still gives
an important insight into the storage requirements of a
workflow and the reduction in the workflow footprint

that can be achieved by using the cleanup algorithm
alone.

5. Reducing the workflow footprint through
workflow restructuring

The analysis of the LSC workflow revealed that the
workflow was structured such that all the input data
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Fig. 9. Small LSC workflow data footprint over time with and without cleanup.
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Fig. 10. The workup footprint (WFP) with and without cleanup and the cleanup opportunities at each level of the LSC workflow.

would be staged-in at the beginning of the run and
not cleaned up until the level 5 of the workflow. One
solution we explored was to restructure the workflow
by adding extra dependencies so that the computation
would progress in a depth-first manner and thus por-
tions of the workflow would reach the computations and
the cleanup nodes in level 5 of the original workflow
before the remaining level 1 computations would start.
By ordering the data stagein jobs for these remaining
level 1 computations after the cleanup up jobs of the
preceding level 5 tasks, we can achieve a significant
reduction in the workflow footprint.

In order to illustrate the principle behind restructur-

ing, Fig. 12 shows a simple workflow containing two
parallel chains with tasks {0,1} and {2,3} respectively
mapped to a single resource. When run without restruc-
turing both the files a and c would likely be staged in
simultaneously and the footprint of the workflow will
include both of these files present on the storage system
at the same time. The restructuring adds a dependency
between the last job of the first chain {1} and the stagein
job of the second chain, Sic. Moreover, the cleanup
jobs have the highest priority among all jobs. Thus it
is very likely that files a and b would be cleaned up
by Ca and Cb before file c is staged to the resource by
Sic, thus reducing the footprint of the workflow. When
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Fig. 11. The workflow footprint (WFP) with and without cleanup and the cleanup opportunityes at each level of the Montage workflow.

these files are large, the restructuring would achieve a
significant reduction in the footprint of the workflow.

We note that the same effect can be achieved with
careful scheduling of workflow tasks and data transfers.
In some sense we refer to workflow restructuringas
the ordering or sequencing of the execution of the tasks
within the workflow (and this can be done in a resource-
independent way), whereas workflow schedulingmaps
the tasks of a workflow onto two or more resources.

5.1. Moderate workflow restructuring

Initially, we only did a very limited restructuring
of the LSC workflow. Figure 13(a) shows the small
LSC workflow and Fig. 13(b) shows the restructured
workflow. We took the first independent cluster in the
LSC workflow (shown by the oval) and made all the
remaining jobs in the workflow dependent on it. This
assures that this cluster executes first.

This restructuring resulted in a “deeper workflow”
of 12 levels instead of the original 6, but it also im-
proved the workflow data footprint. Figure 14 shows
the cleanup possibilities for the restructured workflow;
they occur at levels 5 and 11. As a result of this distri-
bution of cleanup opportunity, the maximum workflow
footprint with cleanup is about 27% less than that with-
out cleanup. We confirm this by both simulation and
execution on the grid-Figs 15 and 16 respectively. Our
simulations (Fig. 15) predicted a saving of 26.5 % in
the workflow footprint for the moderately restructured
LSC workflow.

An issue that arises in the grid execution is that the
executable workflow generated by Pegasus includes da-
ta stage-in tasks that stage data into the first level of
the workflow. These tasks are not dependent on any

Fig. 12. An example workflow before and after restructuring.

other task in the workflow and thus can usually proceed
as soon as the workflow is started. However, this pos-
es a problem, because we can easily saturate the data
storage and increase the data footprint for workflows
structured like LSC. To overcome this deficiency, we
made these stage-in tasks dependent on the previous-
level computational tasks as shown by an example in
Fig. 12. We then proceeded with the execution of the
restructured LSC workflow on the grid. The actual grid
execution (Fig. 16) showed a reduction of 26% of disk
space used (814.388 MB required for the workflow with
cleanup, 1099.387 MB required for the workflow with-
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Fig. 13. (a) The original LSC workflow. (b) The moderately restructured LSC workflow.
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Fig. 14. The workflow footprint (WFP) with and without cleanup and the cleanup opportunities at each level of the moderately-restructured
workflow.

out dynamic cleanup), similar to that observed with the
simulation.

5.2. Full workflow restructuring

Upon examining the original LSC workflow we no-
ticed additional opportunities for workflow restructur-
ing. Figure 17 shows the most extreme restructuring
we can design that would also not introduce cycles
within the workflow and would potentially reduce the
workflow data footprint.

Figure 18 shows the cumulative workflow footprint
and the cleanup opportunities at each level within this
extremely restructured workflow. The restructuring has
increased the number of levels in the workflow from
the original 6 to 36. However, the cleanup opportuni-
ties are more distributed than before and the maximum
workflow footprint is decreased from approximately
1,125 MB without cleanup to approximately 500MB
with cleanup.

The corresponding simulation results are presented
in Fig. 19. The simulation shows a 59% improvement
in the workflow data footprint. The actual grid runs
shows a similar 56% improvement in data space usage
(Fig. 20).

Obviously there is a tradeoff between the data foot-
print and the workflow execution time, which is reflect-
ed in the increased number of workflow levels. The
increase is due to the reduction in the degree of paral-
lelism in the workflow. The following figures show the
number of workflow tasks running over time. Figure 21
shows the original LSC workflow which has a maxi-
mum and average parallelism of 36 and 15.8 respec-
tively and a runtime of 100.8 minutes. Figure 22 shows
the moderately restructured LSC workflow, which ex-
hibits a similar maximum parallelism but has a lower
average parallelism of only 9.2. This workflow had an
execution time of 152 minutes (an increase of 50% over
the original workflow and proportional to the increase
in the number of workflow levels). Figure 23 shows
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Fig. 15. Simulated behavior of the moderately-restructured workflow.

Fig. 16. Behavior of the moderately-restructured workflow on the OSG.

the task execution profile of the extremely restructured
LSC workflow. The maximum parallelism is reduced
to 13 and the average parallelism is 3.1. The workflow
execution time is increased to almost 300 minutes-3
times the original workflow execution time reflecting
the increase in the number of levels in the workflow to
36.

The restructuring described in this section was done

by a visual examination of the LSC workflow. Our
future work consists of finding algorithmic techniques
for restructuring workflows. Importantly, given the
tradeoff between the workflow execution time and the
data footprint of the workflow, we would like to ex-
amine techniques for restructuring a workflow to exe-
cute within a given space constraint while minimally
affecting the execution time of the workflow.
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Fig. 17. Extremely restructured LSC workflow.

LSC Workflow With Full Restructuring

0

200

400

600

800

1000

1200

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35

Levels

M
B

WFP With CleanUp WFP Without CleanUp CleanUp Opportunity

Fig. 18. The workflow footprint (WFP) with and without cleanup and the cleanup opportunities at each level of optimally restructured LSC
workflow.

6. Science drivers for workflow restructuring

In this paper, the LSC workflow considered is a sub-
set of the large scale workflows used for production
gravitational-wave data analysis. The workflow shown
in Fig. 13 contains 164 nodes, whereas full LSC work-
flows, such as those used to analyze the data taken by
the LIGO detectors from November 2005 to Novem-
ber 2006, contain 185,000 nodes and 466,000 edges
each. These workflows analyze 10 Tb of input data
and produce approximately 1 Tb of output data. Sig-

nificant restructuring of the workflow will be needed
to run such analysis on compute resources with lim-
ited storage. The tools used to represent LSC work-
flows have been designed with flexibility to allow easy
re-factoring of workflows to avoid being locked into a
given environment or computing system.

As part of our work we noticed that the LSC work-
flows, as they are currently structured, impose chal-
lenges on the ability to minimize the workflow data
footprint. LSC scientists have been aware of this and
other issues relating to the structure of the workflow de-
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Fig. 19. Simulated behavior of the optimally restructured LSC workflow.

Fig. 20. Actual Grid behavior of the optimally resturctured LSC workflow.

scribed in [7]. Consider the LSC workflow as shown in
Fig. 13(a). The first and second levels of the workflow
analyze all available data from the three LIGO detec-
tors, and then the third level applies consistency tests
by comparing the analysis products from each detector
for a given time period. The fourth and fifth levels
of the workflow reanalyze the data, using information
gained from these consistency tests, and then a final
consistency test is applied at level 6. These consistency

tests are applied to data in blocks on the order of a day.
Once the second test is complete, that block of data has
been completely analyzed [7] and the results are ready
for the LSC scientist to review.

Since there are no direct dependencies between
nodes at the first level of the workflow, all these nodes
are submitted to compute resources before subsequent
levels. These nodes, and subsequent level 2 nodes,
prevent any consistency tests from being applied until
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Fig. 21. Task execution profile of the original LSC workflow.

the entire data set has been analyzed. Thus, results are
not available until a majority of the data set has been
analyzed. This structure was chosen for expedience in
the early stage of development, but has drawbacks for
large-scale offline batch processing.

In our future work, we intend to work with LSC
scientists to analyze possible restructuring of the LSC
workflows to improve their efficiency. Minimizing
workflow data footprint would allow to leverage Grid
resources with limited storage and a restructured LSC
workflow could be much more efficient, which is an
advantage for obtaining staged results in the offline
analysis of longer data sets.

7. Related work

With Directed Acyclic Graphs (DAGs) being a con-
venient model to represent workflows, the vast amount
of literature on DAG scheduling is of relevance to the
problem of workflow scheduling [28,38]. In recent
years, there has been a revival of interest in the context
of problems especially motivated by scientific work-
flow execution and heterogeneous environments [16,
32,43,44]. In the majority of these works, data used
or materialized in the workflow affects resource selec-
tion only to the extent of minimizing the data transfer
time between resources with the goal of minimizing the
overall workflow execution time. No work has taken

into account the available data storage when selecting
resources, which can be a critical factor when executing
data-intensive workflows. However, in a national level
Grid infrastructure, unavailability of storage space was
cited as the significant cause of job failures [25].

The most interesting work in the context of this pa-
per, which considers data placement, has been present-
ed in [36,37]. Their proposed scheduling and replica-
tion algorithm keeps track of the popularity of datasets
and replicates those datasets to different sites. Howev-
er, the data replication approach does not work well in a
storage-constrained environment as it may increase the
demand of data storage and may lead to heavy storage
requirements for individual resources. The scheduling
algorithm of [36,37] has been extended to a hetero-
geneous resource environment in [42]. This has been
further extended in [41] for situations where a task re-
quires data from multiple sources. However the focus
is resource selection with the goal of minimizing the
task completion time and the storage capacity of the
resources is not a candidate for consideration.

In our previous work, we presented algorithms
for scheduling workflows on storage constrained re-
sources [35]. Storage-aware scheduling was found to
be more reliable and perform better than scheduling
algorithms that do not consider storage constraints. A
related problem is to be able to provision storage re-
sources in advance. Without the ability to guarantee
certain storage availability at a resource, scheduling al-
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Fig. 22. Task execution profile of the moderately restructurecd LSC workflow.

gorithms that operate using storage constraints would
have limited effectiveness. Recently, low level mecha-
nisms for allowing user level allocation of storage re-
sources have been proposed [40]. This work also shows
that the resource providers can benefit from storage
allocation in the form of increased output under high
utilization conditions by isolating the users from one
another. Storage management systems such as Storage
Resource Manager (SRM) [39], Storage Resource Bro-
ker (SRB) [11], and NeST [12] allow users to request
storage allocation.

8. Conclusions

In this paper, we have described two algorithms for
reducing the data footprint of workflow type applica-
tions. We have evaluated the performance of these al-
gorithms using both simulation and actual workflow
execution on the Open Science Grid. In the case of
Montage, we were able to obtain a reduction of approx-
imately 48% in the amount of disk space used. Howev-
er, in order to be able to achieve a significant reduction
in the footprint for the LSC workflow (56%),we needed
to restructure it in a way that impacted the parallelism in
the workflow. Although for this paper, we restructured
the workflow by hand, we plan to investigate automated
techniques in the future. Workflow restructuring is only
an element in the footprint reduction, further improve-

ments can potentially be gained by using data-aware
workflow scheduling techniques. We explored some
of these techniques via simulation and plan to evaluate
them in real grid deployments. The data cleanup algo-
rithm described in this paper has been implemented in
the Pegasus workflow management system and is being
used for real applications.
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